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a b s t r a c t

A model of topographic map refinement is presented which combines both weight plasticity and the
formation and elimination of synapses, as well as both activity-dependent and activity-independent
processes. The question of whether an activity-dependent process can refine a mapping created by
an activity-independent process is addressed statistically. A new method of evaluating the quality of
topographic projections is presented which allows independent consideration of the development of the
centres and spatial variances of receptive fields for a projection. Synapse formation and elimination embed
in the network topology changes in the weight distributions of synapses due to the activity-dependent
learning rule used (spike-timing-dependent plasticity). In this model, the spatial variance of receptive
fields can be reduced by an activity-dependent mechanism with or without spatially correlated inputs,
but the accuracy of receptive field centres will not necessarily improve when synapses are formed based
on distributions with on-average perfect topography.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The development of topographic mappings in the connections
between brain areas is a subject that continues to occupy neurosci-
entists. There have been a number of theoretical investigations on
the development of maps through networks with fixed connectiv-
ity and changes to synaptic weights (Goodhill, 1993; Miller, Keller,
& Stryker, 1989; Song & Abbott, 2001; Willshaw, 2006; Willshaw
& von der Malsburg, 1976). Other models have considered the for-
mation and elimination of synapses with fixed weight (Elliott &
Shadbolt, 1999). There have been few attempts to include both
of these forms of plasticity in a model, i.e. both synaptic weight
change and synaptic formation and elimination. Theories of to-
pographic map formation can be divided by the extent to which
activity-dependent processes, based on Hebbian reinforcement of
the correlated activity of neighbouring cells, are deemed responsi-
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ble for the formation of topography. Some assume that activity-
independent processes, based on chemoaffinity (Sperry, 1963)
provide an approximate mapping, which is then refined (Rut-
hazer & Cline, 2004). Others (Willshaw, 2006) show how activity-
independent processes may fully determine the basic topography.
This paper presents a model of topographic map development,
which combines both weight plasticity and the formation and
elimination of synapses, as well as both activity-dependent and
activity-independent processes. In Section 2, synaptic plasticity
andmodels of topographicmap development are briefly reviewed,
in order to place the model in context. Section 3 then presents
the model, developing it from a general to a more specific form.
Section 4 describes the parameterisation of the model for the
purpose of simulation, as well as describing a novel approach to
analysing map quality. Simulation results are then presented in
Section 5, and some interesting consequences of the model are
explored. This work is part of a project to implement synaptic
rewiring in neuromorphic VLSI (Bamford, Murray, & Willshaw,
in press), however the results presented here are purely compu-
tational.
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2. Review

2.1. Synaptic plasticity

The term ‘‘synaptic plasticity’’ encompasses the formation
and elimination of synapses and changes in their physiological
strength. The growth of axons to form synapses between neurons
of different brain areas is a prerequisite for the development of to-
pographic maps. Synaptic connections can also be eliminated; a
process which has been well studied, for example at the neuro-
muscular junction. In neonatal mammals, each muscle fibre is in-
nervated by axons from several different motor neurons and then
during development most of these synapses are eliminated so that
in the adult, eachmuscle fibre is innervated by only onemotor neu-
ron. The process is known to be competitive and various mech-
anisms have been proposed to account for this (Buffelli, Busetto,
Bidoia, Favero, & Cangiano, 2004), including Hebbian mechanisms.
The formation and elimination of synapses (as well as the remod-
elling of axons and dendrites that underlies it) is collectively re-
ferred as synaptic rewiring (Chklovskii, Mel, & Svoboda, 2004).
Hebbian mechanisms are those in which changes in the

strengths of synapses between neurons are related to the cor-
relation of the neurons’ activity. In models of synaptic plastic-
ity in which coincidence of pre- and post-synaptic activity causes
potentiation, additional constraints are typically applied to pre-
vent the run-away potentiation of synapses, such as global nor-
malisation or decay of synaptic strength (Miller et al., 1989).
However, Hebb’s (1949) original postulate implies causality; for a
pre-synaptic spike to cause a post-synaptic neuron to fire it is nec-
essary that the pre-synaptic spike precede the post-synaptic spike.
Bi and Poo (1998) observed that in cultured hippocampal neu-
rons, the potentiation or depression of a synapse was dependent
on the temporal order of induced pre- and post-synaptic activity.
In this study, pre-synaptic activity preceding post-synaptic activity
caused potentiation (and vice versa) in accordance with the causal-
ity condition, though in other studies the opposite temporal de-
pendence has been observed (Bell, Han, Sugawara, & Grant, 1997).
Such Spike-Timing-Dependent Plasticity (STDP), as it has become
known, has been investigated extensively in computational neu-
roscience. Song, Miller, and Abbott (2000) modelled STDP to show
that in a neuron whose dendritic synapses implemented STDP,
the synaptic weights would diverge into a strong group and weak
group, with the effect that groups of synapses whose input spikes
were more correlated, i.e. more likely to arrive within a narrow
time window of each other, would be preferentially strengthened
over synapses whose input spikes were less correlated. Thus, com-
petition between inputs is implemented without the need for ad-
ditional weight normalisation mechanisms.
There is ongoing debate about the nature of STDP, the molec-

ular mechanisms that give rise to it and its relevance as a candi-
date mechanism for memory and learning. To give some example
of the range of questions that exist: STDP-like behaviour can arise
from a synaptic update rule dependent on post-synaptic mem-
brane voltage rather than post-synaptic spikes (Brader, Senn, &
Fusi, 2007); there are experiments which indicate that individ-
ual synapses may have binary strengths and experience all-or-
nothing plasticity events (Petersen, Malenka, Nicoll, & Hopfield,
1998), which are apparently at odds with studies showing that
synapses have unimodal distributions; and there are questions
over how the contributions of different spike pairs should be com-
bined (Butts, Kanold, & Shatz, 2007; Sjostrom, Turrigiano, & Nel-
son, 2001). Experiments demonstrating the nature of STDP have
typically used in vitro preparations (Bi & Poo, 1998) or unrealistic
levels of stimulation (Zhang, Tao, Holt, Harris, & Poo, 1998) lead-
ing to questions about their relevance to normal cellular processes.
STDPmodels include weight update rules which are dependent on
the weight of a synapse (Gutig, Aharonov, Rotter, & Sompolinsky,
2003); arguably these better model experimental data (Morrison,
Aertsen, & Diesmann, 2007).
Notwithstanding the above, weight-independent STDP rules

similar to the formalism of Song et al. (2000) have been used to
investigate: topographicmap formation (Song&Abbott, 2001); the
response to latency in inputs (Guyonneau, Van Rullen, & Thorpe,
2005); visual feature map learning (Masquelier & Thorpe, 2007);
receptive field reorganisation (Young et al., 2007); learning cross-
modal spatial transformations (Davison & Fregnac, 2006) etc. The
study of Jun and Jin (2007) is notable as a study of the formation
of synfire chains using a combination of STDP and a form of
rewiring plasticity. In the present work, STDP is adopted as a form
of competitive Hebbian plasticity, in line with the above body of
work.

2.2. Topographic maps

A topographic map is an area of the brain where the response
to input parameters varies continuously across the area. Where
a sheet of neurons in one area (the ‘‘source’’ area) innervates a
sheet of neurons in another (‘‘target’’) area, the mapping between
the areas can be said to be topographic if neighbouring neurons
in the target area are (maximally) responsive to the activity of
neighbouring neurons in the source area (Udin & Fawcett, 1988).
The receptive field of a neuron in a target area is a region of the
source area in which stimulation causes activity in the neuron.
The topographic maps present in the cortex receive input from
both eyes. Although these projections are intermixed, tracing
the connections from the eyes to V1 (via LGN) reveals that in
many mammals there are alternating stripes in V1 in which cells
predominantly receive input from one eye or the other (Hubel,
Wiesel, & LeVay, 1977), known as patterns of ocular dominance.
The development of topographicmaps between two brain areas

requires that axons grow from the source area to the correct target
area and then form synapses with neurons in the correct location.
This paper excludes consideration of axon guidance to the correct
brain area and additionally does not consider the questions of how
to target the correct layer (in projections to layered tissue) or how
to terminate on the correct part of a dendritic tree. Furthermore,
it does not model the growth of neural areas and overall changes
in topology during development. Rather it is primarily concerned
with the development of receptive fields. The model assumes a
mechanism for axons to find the correct topographic position.
The purpose of topographic maps in the brain is a matter of

debate. There are suggestions that they may serve to perform
dimension reduction, that theymay have arisen through reasons of
wiring efficiency (Chklovskii & Koulakov, 2004), and that in some
cases they serve as a basis for multimodal integration (Holmes &
Spence, 2005). A distinction can be drawn between maps which
perform some transformation between one layer and another
and those which merely relay information without transforming
it (Knudsen, du Lac, and Esterly (1987) defined the former as
‘‘Computational maps’’). The topographic maps created by the
model presented in this paper servemainly to relay information; it
may be that broad topographic mappings between two areas serve
as a basis for computational transformations at a finer scale, but
this will not be demonstrated in this paper.

2.2.1. Activity dependence vs. independence
Models of topographic map formation can be divided into

those which require activity of the participant cells (that is to
say, electrical or spiking activity) in order to form the map and
those which do not. Sperry (1963) proposed that the target area
be labelled by two orthogonal gradients of chemicals which in-
growing axons could use to be guided to the correct location
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(this is known as the chemoaffinity hypothesis). Experimental
evidence in favour of this hypothesis has followed recently, with
the discovery of various candidate marker chemicals, e.g. the
ephrin family of membrane-bound molecules and their associated
receptors. Prestige and Willshaw (1975) distinguished between
two ways the interactions may work. In Type I matching, source
neurons have an affinity for a specific patch of the target area,
whereas in Type II matching, all source neurons have maximum
affinity for one end of the target area. By contrast, other models
show how maps can form based on Hebbian reinforcement of the
correlated activity of neighbouring cells. Willshaw and von der
Malsburg (1976) presented a model in which two 2-dimensional
sheets of neurons represent two brain areas between which a
topographic mapping should form, with excitatory connections
from each neuron of the source layer to each neuron of the target
layer. Neighbouring source-layer neurons are simultaneously
active and target-layer neurons excite neighbouring or nearby
neurons whilst inhibiting distant neurons. With a Hebbian
mechanism applied to the weights of the synapses, the mapping
develops so that neighbouring source-layer neurons maintained
strong connections with neighbouring target-layer neurons whilst
other connections become weakened. In order for the maps to
be oriented correctly, however, an initial bias in the correct
direction is required. Therefore some element of the explanation
of topography involves processes more fundamental than the
activity-dependent forces invoked in this model. In an alternative
activity-dependent mechanism (proposed by Elliott, Howarth, &
Shadbolt, 1996; Elliott & Shadbolt, 1998, 1999), activity in axons
induces the release of neurotrophic factor from tectal cells, which
diffuses locally, causing formation of synapses from nearby axons.
The above models assume that activity in the source layer of

a mapping is spatially correlated, that is, that neighbouring or
nearby neurons in the source layer are more likely to be co-active.
This would be a reasonable assumption for the visual system since
positions close together in the visual field are more likely to re-
ceive similar stimuli. In mammals, retinotopic projections largely
form prior to birth or to the opening of the eyes, when an organ-
ism would not receive any visual input, but in developing eyes
which have not yet opened there are spontaneous waves of ac-
tivity (Wong, 1999), which would provide spatial correlations in
the absence of genuine visual input. The role of such correla-
tions in forming mappings is a subject of continued debate. Butts
et al. (2007) modelled a mechanism by which retinal wave activ-
ity could cause retinotopic refinement in LGN assuming a learning
rule based on the timing of bursts (which they showed is not in-
compatible with various forms of STDP); this study is interesting
in that themechanism requires spatio-temporal correlations in the
input structure, but this was used simply to reinforce existing pref-
erences laid down by an activity-independent wiring mechanism.
The model presented in this paper works on a similar principle.
The relative contribution of activity-dependent and activity-

independent mechanisms continues to be a subject of debate. The
model presented in this paper includes activity-dependent and
activity-independent processes. Specifically, it looks at how an
activity-dependent process may affect receptive field spread and
ocular dominance pattern formation.

2.2.2. Weight vs. wiring plasticity in topographic map models
A number of models of map development use networks

with fixed connectivity where synaptic weights are subject to
change (Goodhill, 1993; Miller et al., 1989; Song & Abbott, 2001;
Willshaw, 2006;Willshaw&vonderMalsburg, 1976). In suchmod-
els, a synaptic weight of zero is often interpreted as meaning that
the synapse has been retracted. Other models have considered the
formation and elimination of synapses with fixed weight (Elliott &
Shadbolt, 1999). A mathematical equivalence between such mod-
els has been demonstrated under certain conditions (Miller, 1998).
There have been few attempts to include both forms of plastic-

ity in a model. Miikkulainen, Bednar, Choe, and Sirosh (2005) pre-
dominantly used synaptic weight change but supplemented this
with a synaptic elimination process, which occurs periodically for
all weights below a certain threshold. Willshaw and von der Mals-
burg (1979) include both synaptic weight change and rewiring; a
more recent version of the samemodel (Willshaw, 2006) used only
synaptic weight change, noting that (p. 2708) ‘‘A synaptic strength
can be interpreted as the probability of a given retinal axon con-
tacting a given tectal cell.’’.
The model presented in this paper considers both of these

processes. Notwithstanding any mathematical equivalence as
aforementioned, there are compelling reasons to include both
processes. Firstly, since both processes are known to exist and
to operate alongside each other, any model which seeks to fully
explain topographicmapdevelopmentmust ultimately include the
two together. Secondly, each synapsewhich exists has a cost to the
organism in terms of the volume of brain it takes up and the energy
required tomaintain it and to carry it around. In these terms, all-to-
all connectivity is prohibitively expensive, but rather only themost
useful connections should exist. Chklovskii et al. (2004) argued that
the ability of a brain to rewire its connections could substantially
increase its capacity to store information (which in the context
of topographic maps might be interpreted as the formation
of patterned receptive fields which reflect the statistics of the
input activity); they raised the question of how the brain might
implement search over a space of possible network topologies. The
model presented hereafter proposes a possible mechanism, within
the domain of topographic map formation. As a related point, even
setting aside the constraints of a physical neural network, not
implementing all possible connections between neurons can allow
greater computational efficiency in simulations.
As noted above, some models only suppose elimination of

synapseswithout formation.Whilst for the development of retino-
topy the dominant trend appears to be over-elaboration of ax-
onal arbors followed by pruning, nevertheless new synapses are
added. The consideration of how, at least in Xenopus, receptive
field location may change during development due to the chang-
ing ways that retina and tectum areas develop (Gaze, Keating, &
Chung, 1974) suggests that synapse formation is a vital element
for explaining such phenomena.
Regarding the relationship between the two forms of plasticity,

at the neuromuscular junction, a reduction in synaptic efficacy
precedes synapse withdrawal (as judged by quantal release
probability and post-synaptic receptor density, (Balice-Gordon &
Lichtman, 1993; Colman, Nabekemura, & Lichtman, 1997)). One
interpretation of this is that the weakness of a synapse is a causal
factor in its elimination; this is the assumption on which the
relationship between the two forms of plasticity in this model in
based.

2.2.3. Lateral interactions in target layer
Linsker (1986a, 1986b, 1986c) used a correlational mecha-

nism similar in style to Willshaw and von der Malsburg (1976)
to demonstrate the formation of spatial opponent cells and
orientation-specific cells, arranged in columns. Notably, thismodel
assumed that axons from the source layer terminate in random
distributions around a pre-defined and immutable location in the
target layer; the model presented in this paper uses the same as-
sumption. Linsker then used this framework as a basis for investi-
gating the detailed formation of receptive fields. The model shows
how such receptive fields can develop, at least in principle, with-
out any spatial correlations in the input. A similar framework lies
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behind LISSOMmodels (Miikkulainen et al., 2005). A major contri-
bution of these models was to apply the same plasticity rules to
synapses implementing lateral interactions between target-layer
neurons as was applied to feed-forward synapses (from the source
to the target layer). Song and Abbott (2001) applied STDP rules to
excitatory though not inhibitory connections, in order to explore
how the spike-timing dependence of their learning rule would af-
fect the performance of the lateral connections. They found that ex-
citatory connections could act as a guide towards the development
of similar preferences between neighbours and then be weakened
at a later point in development. They also found that, given an ini-
tial bias towards a desired topology, the STDP rule could act to re-
fine the topology without the need for inhibitory connections.
The model which is presented in this paper assumes short-

range excitatory lateral interactions but no longer-range inhibitory
interactions. This follows from Song and Abbott’s observation,
as noted above. Intuitively, the purpose of long-range inhibitory
interactions within an activity-dependent model is to ensure that
different parts of the map develop different input preferences.
However, if an activity-independent process is assumed to create
and maintain a broad topography, different regions of the target
layer are constrained to be innervated by different parts of the
input space and therefore differing input preferences are enforced,
rendering long-range inhibitory interactions redundant.

3. Model

3.1. Overview

In this section a model of map formation is presented. The
model is intended to be general to the extent that it could
apply equally to retinotectal, retinocollicular or retinogeniculate
projections, and possibly others. In brief, this model proposes the
following:

1. Activity-independent processes fully specify a topographic
mapping between a source and target area and guide axons
from the source area towards their ‘‘ideal’’ location in the target
area, i.e. the location dictated by the topographic mapping. The
mechanism that yields this mapping is unspecified; it could
be thought of as a type I chemoaffinity mechanism with fixed
affinities, though other mechanisms could be inserted. This
mechanism acts both initially and continuously.

2. Axon branching leads to formation of synapses over an area
surrounding the ideal topographic location (broadly in line
with, for example, the innervation of the tectum (McLaughlin,
Hindges, & O’Leary, 2003), though simplifying the directional
overshoot of axons observed in the superior colliculus of chick
and rodent).

3. Competitive Hebbian learning detects correlations in input
patterns due to spatial proximity in the source area, such that
synapses from more spatially clustered afferent neurons are
strengthened at the expense of synapses from neurons which
are more distant from other afferents. The effective spread of
the receptive fields of target neurons in the source area is
thereby reduced; this follows the model of Song and Abbott
(2001). To the extent that receptive fields contain input-specific
features, such as ocular dominance segregation, then these arise
from this process.

4. Preferential elimination of weak synapses allows the reduction
of spread to be embedded in the network topology, offering a
possible cause for the reduction in axonal arbor spread seen by,
for example, McLaughlin, Torborg, Feller, and O’Leary (2003).

5. To the extent that this process continues, with further creation
and elimination of synapses, there is the potential for the spread
to be reduced further.
Input layer

Target layer

Fig. 1. The upper grid represents the input layer, whose neurons project to the
neurons of the target layer (the lower grid). Incoming projections are indicated only
for a selected neuron shown as a ball in the target layer. The neurons which make
outgoing connections to that selected neuron are coloured black and arrows are
indicative of these connections. Note that the selected neuron receives incoming
connections from both layers. It may have more than one incoming synapse from
the same neuron and it may also make a connection with itself. The coloured
neurons in the target layer were sampled from a Gaussian distribution around the
selected neuron, whereas the coloured neurons in the input layer were sampled
from a Gaussian distribution around the locationwhich corresponds to the position
of the selected neuron in the target layer. This location is known as the ideal location
and is marked with a star.

The model can be seen as a unique synthesis of existing ideas
and elements of models. The primary purpose is to investigate
the interplay between two types of plasticity, weight change and
rewiring, as they relate to topographicmapping and receptive field
development. The phenomena which are focused on are changes
in the spread of receptive fields and the development of ocular
dominance.

3.2. Details of the model

In this section, greater detail is given, anddistinctions are drawn
between those properties which are general and those specific
ones which have been adopted in order to develop a systemwhich
is amenable to tractable simulation and analysis. Thus, a class of
models is defined, though only a small subset have been simulated
within this project.
There are two layers, the input layer and the target layer, see

Fig. 1. Layers are 2D spaces on which neurons are located. Each
location in one layer has a corresponding ideal location in the other,
such that one layer maps smoothly and completely to the other. In
general, the layers could be of any shape and the transformation
that maps one layer to the other could be any that does not require
discontinuities. For simulation, neural areas are square grids of
neurons, the two layers are the same size, periodic boundaries are
imposed to avoid edge artefacts.
Each cell in the target layer can receive a maximum number of

afferent synapses. It can be said then that each cell has a certain
synaptic capacity. For simulation, all target-layer neurons have
the same synaptic capacity. A set of connections from one layer
to another is referred to hereafter as a projection; this can also
refer to a set of connections from one layer to itself. There are two
excitatory projections, a feed-forward projection from the input
layer to the target layer and a lateral projection from the target
layer back to itself. Axons within these projections compete for the
synaptic capacity of the target neurons. As noted in Section 2.2.3,
for simplicity, inhibitory lateral interactions are not implemented
in this model.
It is assumed that an unspecified activity-independent process

is capable of guiding the formation of new synapses so that they are
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distributed around their ideal locations. A Gaussian distribution is
assumed, since a processwhich is initially directed towards a target
site and then randomly branches on itswaywould yield a Gaussian
distribution of terminations around the target site. To implement
the Gaussian distributions, where a target neuron has fewer than
its maximum number of dendritic synapses, the remaining slots
are considered ‘‘potential synapses’’. At a fixed rate, a synapse
from the neurons of the target layer is randomly chosen. If it is a
potential synapse, a possible pre-synaptic cell is randomly selected
(for the simulations which follow, the last cell to have fired is used
as a possible pre-synaptic partner) and synapse formation occurs
when:

r < pforme
−

δ2

2σ2form (1)

where r is a random number uniformly distributed in the range
(0, 1), pform is the peak formation probability, δ is the distance of
the possible pre-synaptic cell from the ideal location of the post-
synaptic cell and σ 2form is the variance of the receptive field. In other
words, a synapse is formed when a uniform random number falls
within the area defined by a Gaussian function of distance, scaled
according to the peak probability of synapse formation, (which
occurs at δ = 0). This is a rejection sampling process.
Lateral connections are formed by the same means as feed-

forward connections, though σform can be different for each projec-
tion. For simulation, pform was set so as to allow the same overall
probability of formation for each projection. This is because in the
absence of a general rule for the relative numbers of feed-forward
vs. lateral connections formed, startingwith equal numbers of each
is a good basis for observing the relative development of these pro-
jections.
If the synapse which has been selected from the neurons of

the target area already exists (i.e. it is an actual synapse, rather
than a potential one) then it is considered for elimination. In gen-
eral it is proposed that the probability of elimination should be
somemonotonically decreasing function ofweight. For simulation,
due to the nature of the chosen learning rule (weight-independent
spike-timing-dependent plasticity) which tends to deliver a bi-
modal weight distribution, the probability of elimination has been
simplified to one of two values, with a higher value for synapses
with weights below a certain threshold

(
Pelim-dep

)
and vice versa(

Pelim-pot
)
.

In general, synapses implement some competitive Hebbian
learning rule, such that correlations in inputs to a given target
neuron result in preferential strengthening of those synapses at the
expense of the strength of other synapses. The neuron model and
inputs used should be of types which support the chosen synaptic
process. For simulation, the synapses, neurons and type of input are
based on the model of Song and Abbott (2001), i.e. with integrate-
and-fire neurons with synaptic modulation governed by STDP. The
criticisms of STDP raised in Section 2.1 should be borne in mind;
the model inevitably loses some generality due to this decision.
Most models of map formation use more abstract learning rules.
This may be partly motivated by computational constraints but
also by a desire for simplicity. Nevertheless the model of Song
and Abbott (2001) has been chosen because: (1) its applicability
to the modelling of topographic map formation has already been
demonstrated, such that existing results can be built on; (2) the use
of STDP is attractive because it implements a competitive Hebbian
learning rule without requiring additional processes for weight
normalisation; (3) STDP is a form ofweight changewhich is known
to occur in biological neurons, and as such, has the potential to
add biological realism to a model (although lack of knowledge of
suitable parameters may undermine this advantage). The detail of
the model used, including neuron and synapse dynamics, inputs
and initial conditions, is given in algorithm 1.
Algorithm 1Model summary
There are two layers of the same size, the input and target layers;
each is a square grid of neurons with periodic boundaries, and the
ideal location of each neuron in the input layer is the location with
the same coordinates in the target area. Each target-layer neuron
has the same number of potential synapses; these are dendritic
locations in which actual synapses may form. Synapses can be
with a pre-synaptic neuron from either the input or target layer,
including the post-synaptic neuron itself.
Initial conditions: all potential synapses start formed, with
conductance gmax.
Input: neurons are independent Poisson processes. A stimulus
location s is randomly chosen and firing rates are set to fbase +
fpeak exp

(
−d/2σ 2stim

)
, where d is the distance from s. With a period

tstim, smoves to a new random location and the process repeats.
Neuron dynamics (target layer): the membrane voltage Vmem is
described by:

τmem
δVmem
δt
= Vrest − Vmem + gex(t) (Eex − Vmem)

Eex = excitatory reversal potential; Vrest = resting potential;
τmem = membrane time constant. Upon reaching a threshold Vthr ,
a spike occurs and Vmem is reset to Vrest . A pre-synaptic spike at
time 0 causes a synaptic conductance at time t ≥ 0 of gex(t) =
ge
−t
τex (τex = synaptic time constant); this is cumulative for all pre-

synaptic spikes.
STDP: a pre-synaptic spike at time tpre and post-synaptic spike at
tpost modify the synaptic conductance by g → g + gmaxF(1t),
where 1t = tpre − tpost and F(1t) = A+ exp (1t/T+) if
1t < 0, otherwise F(1t) = −A− exp (−1t/T−), where A+/−
are magnitudes and τ+/− are time constants for potentiation and
depression respectively. This is cumulative for all pre- and post-
synaptic spike pairs; g is bounded in (0, gmax).
Synaptic rewiring: At a fixed rate frew , a potential synapse is
randomly chosen. If it is an actual synapse, the elimination rule is
used, otherwise the formation rule is used.
Formation rule: A possible pre-synaptic neuron is randomly se-
lected from either the input or target layer and synapse formation
occurs if:

r < pforme
−

δ2

2σ2form

r = uniform random number in (0, 1); pform = peak formation
probability; δ = distance of possible pre-synaptic neuron from
ideal location of post-synaptic neuron; σ 2form = variance of the
connection field. pform and σ 2form may differ based on which layer
the possible pre-synaptic neuron is from.
Elimination rule: If the synapse’s conductance is below 0.5gmax it is
eliminated with probability pelim-dep, otherwise probability pelim-pot
is used.

4. Methods

4.1. Experimental parameters

In this section, the process by which the model was parame-
terised is explained. Parameters for the following simulations are
given in Table 1.
Simulations were run with a C++ function, with initial condi-

tions created and data analysis carried out with Matlab. Simula-
tions used a time step of 0.1 ms and rewiring simulations typically
settledwithin 5min of simulated time. Full-scale simulationswere
computationally intensive, necessitating the use of relatively small
numbers of neurons and synapses; this in turn necessitated a rigor-
ous statistical approach to analysis of results. The size of the grids
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representing neural layers was 16× 16 (i.e. number of neurons in
a layer, Nlayer = 256), enough that discernible patterns of ocular
dominance might be observed (c.f. 25 × 25 (Miller et al., 1989);
32 × 32 (Goodhill, 1993); 20 × 20 (Elliott & Shadbolt, 1999)). In
determining the maximum fan-in, or number of potential affer-
ent synapses per target neuron, it was found that as the fan-in re-
duced, the performance of STDP as a correlation detector degraded
and the bimodal distributions generated were less extreme; this
could be compensated to some extent by building stronger corre-
lational cues into the inputs, as shown by Bofill-i Petit (2005) who
achieved strong segregation between just 6 synapses with care-
fully constructed inputs. Therefore the choice of fan-in represents
a compromise between amount of computation necessary and the
desire to use more realistic input spike trains. Data is scarce on
actual number of dendritic synapses in areas such as the tectum
or superior colliculus, so it is difficult to say what a biologically
realistic number might be — it may vary greatly between differ-
ent organisms, brain areas and developmental stages. For most of
the simulations in this paper the maximum fan-in (Smax) was 32,
though it was increased to 64 for one set of experiments.
Data is scarce on appropriate values for the probabilities gov-

erning synapse formation and elimination. However, dendritic
spines have been imaged extending and retracting over peri-
ods of hours compared with others stable over a month or
more (Grutzendler, Kasthuri, & Gan, 2002; Trachtenberg et al.,
2002). In the simulations, much higher rates were used so that
synapses had several chances to rewire during the short periods
for which it was tractable to run simulations, while maintaining
a large difference between these probabilities (in practice a factor
of 180 was used, representing the difference between 4 h and 1
month, i.e. pelim-pot = pelim-dep/180). The value of pform works to-
gether with the rewiring rate (frew = 104 Hz, an arbitrary choice),
the number of synapses (16×16×32 = 8192),σform, and the topol-
ogy of the area to define the actual rate of formation. σform-ff (i.e.
for feed-forward synapses) was given a larger value than σform-lat
(i.e. for lateral synapses), in line with generic parameters given
by Miikkulainen et al. (2005). Once a synapse has been eliminated
there is no computational benefit from not being formed again as
soon as possible, therefore pform-lat = 1, so that if a possible pre-
synaptic partner is presented whose ideal location matches the
location of the post-synaptic neuron, then the match is accepted.
Since σform-ff > σform-lat , pform-ff should be less than pform-lat in order
to balance the overall probability of synapse formation with each
afferent layer; in fact, to achieve this balance:

pform-ff = pform-lat
σ 2form-lat

σ 2form-ff
. (2)

The mean formation rate can then be calculated. Pelim-dep was set
at half the mean formation rate so that weak synapses would
be eliminated half as often as potential synapses became actual
synapses, so that the majority of the potential synapses would
be formed at any point. In practice, for the parameters given, de-
pressed synapses were eliminated after an average of 33 s whereas
strong synapses would only be eliminated with a probability of
≈0.05 within a 5 min simulation.
Regarding inputs, the stimulus location changed regularly every

0.02 s. This regularity is a move away from the model of Song and
Abbott 2001 in which tstim was chosen according to an exponential
distribution; this was a necessary concession to provide stronger
correlation cues (i.e. more effective symmetry breaking) given the
smaller number of synapses per neuron. A further concession was
the more extreme values of the base and peak firing frequencies,
fbase and fpeak. The spread of the stimulus, σstim, was chosen to be
between the values of σform-ff and σform-lat and fpeak was set so as to
keep the overallmean firing rate at a value, fmean, whichwas chosen
to allow sufficient difference between fbase and fpeak.
Table 1
Simulation parameters.

Wiring Inputs Membrane STDP

Nlayer = 16× 16 fmean = 20 Hz Vrest = −70 mV A+ = 0.1
Smax = 32 fbase = 5 Hz Eext = 0 V B = 1.2
σform-ff = 2.5 fpeak = 152.8 Hz Vthr = −54 mV τ+ = 20 ms
σform-lat = 1 σstim = 2 gmax = 0.2 τ− = 64 ms
pform-lat = 1 tstim = 0.02 s τm = 20 ms
pform-ff = 0.16 τex = 5 ms
pelim-dep = 0.0245
Pelim-pot = 1.36e−4

frew = 104 Hz

For the neuron and synapse dynamics, parameters were set
starting from parameters given in Song and Abbott (2001). A+
was increased 20-fold as a concession to limited computational
resources for simulations (this should not qualitatively change the
model since many plasticity events are still needed to potentiate
a depressed synapse). Then key parameters were varied, in order
to maintain key conditions, which were: The total weight should
be approximately 50% of the maximum possible; the average
target neuron firing rate should approximately match the average
input firing rate; and the total weight of lateral synapses should
roughly match the weight of feed-forward ones. The parameters
which were varied are as follows. The peak synaptic conductivity,
gmax, was varied, since this affects the amount of stimulus the
neurons receive and thus their firing rates. The ratio of time
constants for depression and potentiation, τ−/τ+, was varied,
since this affects the relative weights of feed-forward and lateral
synapses, (since correlated feed-forward synapses benefit less
from symmetry breaking when the ratio increases); in practice τ+
was held constant whilst τ− was varied, as in Song and Abbott
(2001). The ratio of depression to potentiation, B = A−τ−/A+τ+,
was varied, since this affects the balance of weights; in practice,
A− was treated as the free parameter in order to vary B, however
B is quoted, since its meaning is more intuitive. In the interests of
simplicity, Bwas constrained to having the same value for different
projections, feed-forward vs. lateral. In practice, it was difficult to
find a good set of parameters, since they are interdependent. For
example, varying the spike rate changes the balance of theweights,
and vice versa. Moreover, a single set of parameters inevitably leads
to different results depending on the nature of the inputs and
depending on whether rewiring was implemented, so there are
inevitably confounding factors when attempting to compare these
different cases.
Initial placement of synapses was performed by iteratively

generating a random pre-synaptic partner and carrying out the
formation rule. Feed-forward and lateral connections were placed
separately, up to their initial number of 16 synapses each.

4.2. Analysing topographic map quality

For calculating the centre of the receptive field for each target
cell (hereafter referred to as the preferred location of a target cell),
the use of the centre of mass measure as in Elliott and Shadbolt
(1999)would be erroneous. The space is toroidal but, as the authors
noted, the centre of mass is always calculated relative to perfect
projections. Therefore the calculation of preferred location would
be skewed by the choice of reference point from which synapses’
coordinates are measured. This bias has been avoided by the novel
method of searching for the location around which the afferent
synapses have the lowest weighted variance (σ 2aff ), i.e.:

σ 2aff = argmin
Ex

∑
i
wi|Epxi|2∑
i
wi

(3)

where i is a sum over synapses, Ex is a candidate preferred location,
|Epxi| is the minimum distance from that location of the afferent
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Table 2
Summary of simulation results: case 1: rewiring and input correlations; case 2: input correlations and no rewiring; case 3: rewiring and no input correlations.

Case 1 2 3

Target neuron mean spike rate 24.7 17.4 10.5
Final mean number of feed-forward incoming synapses per target neuron 14.1 NA 12.5
Weight as proportion of max for the initial number of synapses 0.60 0.36 0.33
Mean σaff -init 2.36 2.36 2.36
Mean σaff -fin-con-shuf 2.32 NA 2.32
Mean σaff -fin-con 1.95 2.36 2.17
p (WSR σaff -fin-con vs. σaff -fin-con-shuf ) 2.4× 10−25 NA 5.0×10−6
Mean σaff -fin-weight-shuf 1.88 2.10 1.99
Mean σaff -fin-weight 1.70 1.98 1.95
p (WSR σaff -fin-weight vs. σaff -fin-weight-shuf ) 2.7× 10−27 8.7× 10−6 0.028
Mean ADinit 0.78 0.78 0.78
Mean ADfin-con-shuf 0.89 NA 0.90
Mean ADfin-con 0.83 0.78 0.93
p (WSR ADfin-con vs. ADfin-con-shuf ) 0.31 NA –
Mean ADfin-weight-shuf 0.92 1.36 1.21
Mean ADfin-weight 0.95 1.58 1.34
p (WSR ADfin-weight vs. ADfin-weight-shuf ) 0.48 0.0012 –
for synapse i and wi is the weight of the synapse (if connectivity
is evaluated without reference to weights, synapses have unitary
weight). This has been implemented with an iterative search over
each whole number location in each dimension and then a further
iteration to locate the preferred location to 1/10th of a unit of
distance (the unit is the distance between two adjacent neurons).
Note that in the non-toroidal case this location is equivalent to the
centre of mass, as used in Goodhill (1993).
Having calculated the preferred location for each neuron in the

target layer, themean of the distance of the preferred location from
the ideal location was taken to give a mean Absolute Deviation
(AD) for the projection. By reporting both mean AD and mean σaff
for a projection there is a basis for separating the spread of the
receptive fields from the deviation of their preferred locations from
their ideal locations. However AD and σaff are both dependent
on the numbers and strengths of synapses and these can change
during development. Therefore to observe the effect of the activity-
dependent development mechanism irrespective of changes in
synapse number and strength, comparison was made in two
ways. Firstly, for evaluating change in mapping quality based only
on changes in connectivity without considering the weights of
synapses, a new map was created by taking the final number of
synapses for each target neuron and randomly placing them in
the same way as the initial synapses were placed. σaff and AD
were then calculated for each neuron in each of the maps and
the means of these (i.e. mean σaff and mean AD) were compared,
applying significance tests between the values of two populations
of neurons, i.e. all the neurons on the final map vs. all those on
the reconstructed map. Having established what effect there was
on connectivity, the additional contribution of weight changeswas
considered, by creating a newmap with the same topology, taking
the final weights of synapses for each target neuron and randomly
reassigning these weights amongst the existing synapses for that
neuron. The two maps were then compared as described above.

5. Results and discussion

Three main experiments were carried out: case 1 had both
rewiring and input correlations, as described in Section 3; case 2
had input correlations but no rewiring; case 3 had rewiring but no
input correlations (i.e. all input neurons had rate fmean). The results
are given in Table 2.
For comparisons, mean σaff and mean AD were each calculated

for the feed-forward connections of the following networks: (a) the
initial state (with all weights initially maximised) — these results
are suffixed ‘‘init ’’, i.e. mean ADinit ; (b) the final (‘‘fin’’) network
with weights not considered but only connectivity (‘‘con’’) with all
synapses weighted equally, i.e. mean ADfin-con; (c) for comparison
with mean ADfin-con, the final number of synapses for each target
neuron, randomly placed (‘‘shuf ’’) in the same way as the initial
synapses (not applicable for simulations with no rewiring), i.e.
mean ADfin-con-shuf ; (d) the final network including weights, i.e.
mean ADfin-weight ; (e) for comparison with mean ADfin-weight , the
final connectivity for each target neuron with the actual weights
of the final synapses for each target neuron randomly reassigned
amongst the existing synapses, i.e. mean ADfin-weight-shuf . Results
were compared using Wilcoxon Signed-Rank (WSR) tests on AD
and σaff for incoming connections for each target neuron over
the whole target layer for a single simulation of each of the two
conditions under consideration.

5.1. Receptive field spread and the effect of rewiring

The effect of rewiring can be seen by comparing case 1 (with
rewiring) and case 2 (without rewiring). Considering topology
change, in case 1 mean σaff -fin-con drops to 1.95, c.f. 2.32 for mean
σaff -fin-con-shuf ; this drop is significant. In case 2 mean σaff -fin-con is
constrained to remain at mean σaff -ini = 2.36. Considering weight
change, in case 1, mean σaff -fin-weight drops to 1.70, c.f. 1.88 formean
σaff -fin-weight-shuf . In case 2, mean σaff -fin-weight drops to 1.98, c.f. 2.10
for mean σaff -fin-weight-shuf . Both drops are significant.
Mean σaff -fin-weight appears to be lower in case 1 than case 2.

It is not possible to say for sure that this superior reduction of
variance is due to the effect of the rewiring mechanism because
the different numbers and weights of final synapses in each case
make a comparison impossible. However, there is a good reason
to believe that this is so: the drop in mean σaff -fin-con. This drop
on its own indicates that the rewiring mechanism has helped to
reduce variance and would also lay the groundwork for different
final measures of σaff when weights are considered.
It can be seen then that (a) the weight-changing learning rule

causes some reduction in the variance of the receptive fields, and
(b) when the rewiring mechanism is applied, the network topol-
ogy develops such that a variance reduction can be observed in the
placement of the synapses, irrespective of their weight. Since the
rewiring mechanism on its own can only generate synapse distri-
butions according to the variance used by the formation rule it has
no means to reduce this variance except the influence from the ef-
fect of the weight-change mechanism, whereby outlying synapses
are weakened and become subject to preferential elimination.
Thus, the variance reduction is caused by theweight-changemech-
anism and becomes embedded in the network topology as a result
of the rewiring mechanism.
It can also be seen qualitatively that the effect of rewiring is

to embed in the connectivity of the network input preferences
which arise through the weight changes mediated by the learning
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Fig. 2. Normalised weight density of incoming lateral synapses (weight/unit
area; y-axis) radially sampled and interpolated at given distances of pre-synaptic
neuron from post-synaptic neuron (x-axis), averaged across population. Left: Initial
connectivity (weights maximised); middle: final connectivity, weighted by final
synaptic weights; right: final connectivity, not considering weights, i.e. each
synapse is considered to have unityweight. Autapses (those synapseswith a neuron
at zero distance) are disproportionately depressed and this weakness leads to
preferential elimination.

rule. STDP favours causal inputs with the lowest latency and
local excitatory lateral connections tend to lose the competition
with excitatory feed-forward connections as they have a higher
latency (Song & Abbott, 2001). The extreme of this effect can be
seen in synapses from a target neuron back to itself (‘‘autapses’’).
The placement rule allows these synapses to form, but they only
ever receive a pre-synaptic spike immediately following a post-
synaptic spike and therefore they have a strong tendency to be
depressed by the learning rule. Fig. 2-left shows the initial density
of incoming lateral synapses from pre-synaptic partners at given
distances out from the post-synaptic neuron. It can be seen that the
average neuron receivesmore synapses from itself (thosewith zero
distance of pre-synaptic neuron from post-synaptic neuron) than
from any of its closest neighbours. Fig. 2-middle shows the final
distributionwhere synapses areweighted. The autapses have been
depressed much more than their neighbours. Fig. 2-right shows
the final distribution only considering numbers of synapses and
not their weights. The proportion of autapses to lateral synapses
with neighbours has reduced from the initial state, due to the
preferential elimination of the weak autapses.
As a further demonstration of the effect of rewiring, a simu-

lation was carried out with the input neurons divided into two
groups, mimicking the effect of binocular inputs. The groups were
interspersed in a chequered pattern, i.e. each input neuron was
in the opposite group to its 4 orthogonally adjacent neurons; the
stimulus location switched between the two groups every time it
changed. To keep the overall input rate the same, the peak firing
rate was doubled. These input patterns are referred to as binoc-
ular inputs, as opposed to the monocular inputs used previously.
In Fig. 3, each raster is an ocular preference map, wherein each
cell represents a target neuron, and is shaded on a scale from
white to black according to the (weighted) proportion of its affer-
ent synapseswhich are fromone of two separately intra-correlated
input spaces interspersed in the input space. Given the small mod-
els used, the visual differences are not very striking, therefore a
quantitative measure of ocular preference was calculated. The ‘oc-
ularity’ of a target neuron, considering the weights of its incoming
synapses, is defined as:

Ocularity =

∣∣∣∣∣∣∣∣
n1∑
i=1
wi1 −

n2∑
i=1
wi2

n

∣∣∣∣∣∣∣∣ (4)

where nx is number of its incoming synapses from the xth input
space (where the input spaces are arbitrarily numbered from 1
to 2), n is the total number of incoming synapses from both in-
put spaces, and wix is the weight of the ith synapse from the xth
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Fig. 3. Ocular preference maps for a set of three experiments. Above each raster
is the mean ocularity measure, as defined in Eq. (4). (a): initial connectivity for
all experiments (weights maximised); (b): result with binocular inputs but no
rewiring, showing the unchanged connectivity weighted by final synaptic weights;
(c–d) results with binocular inputs and with rewiring; (c) final connectivity
weighted by final synaptic weights; (d): final connectivity, not consideringweights,
i.e. each synapse is considered to have unity weight; (e–f) results with rewiring but
withmonocular inputs, showing as (c–d) respectively. The patternwhich developed
in the weights in (c) has become embedded to some extent in the connectivity (d).

input space. Where ocularity is defined based only on connectivity
without considering the weights of synapses, the same expression
is usedwith all weights set to unity. Ocularity therefore gives a real
value in the range [0, 1], where low values indicate a balanced in-
put from both input spaces and high values indicate a strong pref-
erence for one input space or the other.
Fig. 3(a) shows the initial preferences of each target neuron

for input neurons in the two groups. (c) shows the final ocular
preference map where synapses are weighted. Although the space
used was too small and the result of the learning rule with a
small number of synapses too random for familiar striped ocular
dominance patterns to emerge, ocular preference zones can be
seen. This pattern is reflected in the final map of connectivity in
(d), where synaptic weights are not considered. For comparison,
the results in (b) are from an experiment which differed only in
that rewiring was not performed; in this case, although a pattern
of ocularity preference arose in the weights of the connections to a
similar extent, this pattern could not be transferred to the network
topology (thus the final connectivity is as in (a). This, therefore,
is another example of weight patterns caused by input activity
becoming embedded in connectivity patterns by the rewiring
mechanism. (e) and (f) are the final ocular preference maps for
weights and connectivity respectively for a control experiment
with monocular inputs (in fact, this is case 1 from Table 2).
To demonstrate that the apparent increase in ocularity in the
final connectivity map in the rewiring case with binocular inputs
(d) is not just an artefact of the simulation, a shuffled version
of the map was created, in which all the pre-synaptic neurons
from all the synapses were randomly reassigned amongst all the
existing synapses, whilst the same number of dendritic synapses
was maintained for each target neuron. The ocularity was then
recalculated for each of the target neurons and this set was
compared to the ocularities of the target neurons in the unshuffled
map, using a WSR significance test. The change in ocularity in the
final connectivity map in the rewiring case with binocular inputs
(d) is significant (p = 7.5 × 10−5), whereas for comparison, the
change in ocularity in the final connectivity map with rewiring
but with monocular inputs is not (p = 0.98). Although the mean
ocularity in (b) is higher than in (c), conclusions should not be
drawn from this, as the numbers and overall weights of incoming
synapses may independently affect the ocularity measure, thus a
direct comparison is not possible.

5.2. Receptive field centres

Considering the effect of the algorithm on mean AD, in case 2
mean ADfin-weight is significantly increased c.f. mean ADfin-weight-shuf .
In case 1 the corresponding change is not significant. In case 1 the
drop in mean ADfin-con c.f. mean ADfin-con-shuf is not significant.
The basic action of weight-independent STDP on a set of in-

coming synapses for a single neuron is to deliver a bimodal weight
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distribution (Song & Abbott, 2001). Where there are input correla-
tions these cause the more correlated inputs to be maximised and
the less or uncorrelated inputs to be minimised. The effect of both
the input correlations and the local excitatory lateral synapses on
each individual incoming connection field then should be to cause
a patch of neighbouring synapses to become potentiated and for
outliers from this patch to be depressed. This could bemore simply
thought of as choosing a subset of the synapses. Ideally the subset
which is chosen will be the subset which is most tightly clustered,
in other words, the subset with the lowest variance. This is also
true if the sample variance measure is used instead of the popula-
tion variance. It can be proven that for samples drawn from nor-
mally distributed data, the sample variance is independent from
the sample mean. That is to say, the centre of mass of the tightest
cluster is no more likely to be located towards the ideal location
than if the samenumber of synapseswere placed randomly accord-
ing to the initial distribution. This is only true for samples drawn
from a normal distribution; however, in this case the population of
synapses from which the sample is drawn has a finite number of
data points and therefore only approximates to a normal distribu-
tion. The effect of this is to introduce an additional error in AD, such
that the final value of AD is likely to be slightly higher than if the
corresponding number of synapses is distributed according to the
initial distribution. This increase though is only slight, such that it
does not necessarily pass the significance tests (as the number of
afferent synapses for a neuron increases, this increase should tend
to zero). Rewiring cannot be expected to do anything to eliminate
this error since it can only enhance existing trends.
The result of the learning rule is not therefore to drive the pre-

ferred location towards the ideal. This suggests that, given the
assumptions in this model, any improvement in the quality of to-
pography, as judged by reduction in the distance of preferred loca-
tions from ideal locations (as opposed to reduction in the spread of
receptive fields) observed in the development ofmaps in biology, is
likely to be due to such activity-independent mechanisms as exist.
The final results in this respect are not inconsistent with

biological topographic maps. In V1 receptive field centres of cells
within a single cortical column have been found to be distributed
randomly with a standard deviation which is comparable to
the areas of the receptive fields (thus, in the terms used here,
comparable to the spreads of the receptive fields, as judged by the
standard deviation) (Creutzfeldt, Innocenti, & Brooks, 1974; Hubel
& Wiesel, 1968).

5.3. The role of input correlations

Considering the role of input correlations, in case 3 (rewiring
but no input correlations)meanσaff -fin-con = 2.17, vs. 2.31 formean
σaff -fin-con-shuf ; this is significant. Mean σaff -fin-weight = 1.95 vs. 1.99
for mean σaff -fin-weight-shuf ; this is significant.
The slight drop in mean σaff -fin-weight is a sufficient cue to drive

the narrowing of the incoming connection fields, as evidenced
by the drop in mean σaff -fin-con. It was shown (Linsker, 1986b;
Miikkulainen et al., 2005) that functional architecture can form in
the absence of any input except uncorrelated random noise. Here a
complementary result can be seen in which receptive field spread
reduces without input correlations. However, the mechanisms
are different, since Linsker’s result was described in terms which
require lateral inhibition,which is not present in thismodel. Rather
there are two possible mechanisms for this. Firstly, a target neuron
may receive two or more synapses from a single input neuron.
These synapseswill always be correlated and are likely to reinforce
each other, becoming more likely to be amongst the potentiated
neurons and thus narrowing the spatial variance. Secondly, a spike
from a single input neuron will excite a given target neuron and
any other of its neighbours which have a synapse from that input.
Thus the neuron will also tend to receive some excitation from
lateral connections because of that spike. The smaller range of
σform-lat should selectively enhance the input from a smaller range
of locations, leading to a reduction in variance.

5.4. The effect of rewiring on pattern stability

It is natural to enquire about the utility of embedding a learnt
pattern in the connectivity of the network. Although a compre-
hensive answer will not be provided, a further set of experiments
with ocular preference maps provides a suggestion. Billings and
vanRossum (2009) investigated thepersistence of learnedpatterns
stored in weights, in feed-forward networks with plasticity gov-
erned by STDP. One of their theoretical findings was that, in the
case ofweight-independent STDP as used in this paper, the amount
of time for which a learnt pattern will remain stable (as measured
by the proportion of synapses that stay in the potentiated or de-
pressed state) is exponentially dependent on the inverse of the
magnitude of conductance change. In the experiments presented
here, the magnitude of conductance change (A+/−) was raised in
order to reduce simulation time, as stated in Section 4.1, thus the
weights change at unrealistically high speeds. Rewiring speeds
are also unrealistically fast but, importantly, synapses rewire at a
lower rate than they undergo weight plasticity, as appears to be
the case in biological neural networks. A pair of experiments were
carried out in which binocular inputs were used, as in the ocular
preference experiments in Section 5.1. One experiment was with
rewiring and the other without. In these experiments, double the
number of synapses were used (i.e. 64 in total), and some param-
eters were modified to optimise for the production of ocular dom-
inance segregation (gmax = 0.1, pelim-dep = 0.01, pelim-pot = 5.56×
10−5, σform-ff = 1.99, σform-lat = 2.49, Initial number of ff synapses
per target neuron= 25, Initial number of lat synapses= 39). Both
experiments had exactly the same initial conditions and exactly
the same input spike trains. The results are shown in Fig. 4. With-
out rewiring, ocular preference patterns form but they are quickly
replaced with other patterns as the inputs change. With rewiring,
patterns in the weights of connections are initially changeable but
as preferences in the weights start to be transferred to the pat-
tern of connections, the changeability reduces. From around 90s
onwards, the broad pattern in the weights remains the same with
only gradual drift of the pattern; meanwhile the strength of the
pattern embedded in the connectivity continues to increase, until
it visually reflects the pattern in the weights. In this demonstra-
tion, the patterns that form are arbitrary, since there is nothing in
the inputs to bias the target neurons to form a preference towards
one input space rather than the other. Nevertheless this serves as
a demonstration of the potential utility of synaptic rewiring as a
means of prolonging the retention of learnt patterns.

5.5. Limitations of the model and future directions

Although a reduction in the spread of receptive fields is seen,
it is on a small scale. It is possible that the small numbers of
synapses limit the effect. Though figures are not available for the
results of Song and Abbott (2001, figure 6), the variance reduction
achieved appears to be larger (with 200 feed-forward connections
cf.≈16 in these simulations, albeit in a 1Dmapping scenario). They
also noted that in their simulations, altering the range of the spatial
correlations could affect the tightness of the final projection.
Quantitative information on the variance reduction seen in biology
is sparse. However, whilst axonal arbor spread reduces quite
substantially in rodents (McLaughlin, Torborg et al., 2003) and
chicks, in fish and amphibians it does not necessarily reduce in
absolute size, only relatively to the area of the tectum, which
expands during development (McLaughlin, Hindges et al., 2003).
Thus, it may be counter-productive to judge the observed variance
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Fig. 4. Ocularity time series for two experiments. Each raster is an ocularity
preference map, superscripted with the mean ocularity measure, as in Fig. 3. Left to
right: samples at increasing times through the simulation, from 0 s, incrementing
each 30s until 300s (as subscripted). Top row: no rewiring, ocularity including
weights; Middle row: with rewiring, ocularity for connectivity only; Bottom row:
with rewiring, ocularity including weights. Note that a connectivity-only set is not
given for the no-rewiring case, since this does not change but rather remains exactly
as in the first (0s) image in row 1 (no rewiring, ocularity including weights), at
which point the weights are all maximised and the preferences are therefore due to
the connectivity. While the pattern in the weights without rewiring changes as the
inputs change, in the rewiring case the pattern in the weights becomes embedded
in the connectivity and this helps to stabilise the pattern in the weights.

reduction quantitatively in a model with intended generality, but
rather sufficient simply to observe that such an effect is possible.
Nevertheless further work would be needed to fully characterise
the performance of the variance reduction phenomenon with
different parameters.
A possible way this model could be extended would be to allow

axon branching to be guided by the existence of axons, such that
an input neuron is more likely to form synapses with target cells
which are close to target cells which it is already innervating.
This might be expected to model axonal arbor development more
accurately. In addition, there is nomechanism in this model for the
preferential sprouting of synapses due to potentiation (Toni, Buchs,
Nikonenko, Bron, &Muller, 1999)—a complementaryway inwhich
the two types of plasticity could interact.
As is common in this field, point neurons have been modelled,

that is to say, there has been no consideration of the spatial and
temporal summation and filtering performed by transmission of
post-synaptic potentials through dendritic trees. Such considera-
tions are likely to be important for a complete understanding of
map formation, especially since it is known that different tempo-
ral learning windows can exist for synapses at different locations
on the dendritic tree (Kampa, Letzkus, & Stuart, 2007).
The development of a mapping from the start has not been

simulated, nor has the growth of areas been addressed. Rather, this
model assumes a starting time at some point during development,
in order to assess the effect of the proposed learning rules. This
is reasonable, as it mimics the progress from an initially diffuse
mapping towards a final mapping, which is thought to be at
least partly dependent on activity (Simon, Prusky, O’Leary, &
Constantine-Paton, 1992). Nevertheless, this focus limits the scope
of themodel. Additionally, an unjustified assumption, used by Song
and Abbott (2001) and adopted here, is that new synapses start
strong and then get weakened; the opposite case seems more
likely when the process of synapse formation is considered. This
assumption has been used for simplicity because it avoids the
need for any additional homeostatic mechanisms to kick-start the
activity of the network. If after initial maximisation, newly formed
synapses are added with zero strength, the simulations function
similarly, although mean weights are slightly lower.
As noted above, this work is part of a project to implement

synaptic rewiring in neuromorphic VLSI. An implementation of
this model has been fabricated; the interested reader is directed
to Bamford et al. (in press) for details. The computational efficiency
which may be gained by not implementing synapses between all
possible pairs of neurons was noted above, as was the related
saving of space and energy in the brain. The hardware implemen-
tation of this model, in which each synapse has a physical in-
stantiation, has space and energy costs analogous to those of the
brain. Meanwhile, STDP, whilst more computationally intensive to
simulate than certain more abstract learning rules, has a neat
implementation in pulse-based neuromorphic hardware. These
considerations suggest that computational modelling using the el-
ements in thismodelmay have benefits in the development of new
potentially useful computational hardware.

6. Conclusions

Amodel of topographic development has been presentedwhich
includes both weight and wiring plasticity. There are three key
assumptions: (a) synapses preferentially form in locations towhich
their axons are guided, (b) weights of dendritic synapses of a
neuron are modified according to a competitive Hebbian learning
rule, and (c) weaker synapses are more likely to be eliminated. In
order to instantiate themodel, more assumptions have beenmade,
the main one being that the weight-change mechanism is a form
of STDP.
It has been found that whilst spatially correlated inputs help

to create patterns of synaptic weights which favour narrower pro-
jections, spatial correlations are not necessary for some reduction
of variance to occur. A weight-change mechanism and a rewiring
mechanism can work together such that the rewiring mechanism
acts to embed patterns of synaptic strengths in the network topol-
ogy; this is as one would expect, though it has not been demon-
strated quantitatively before. There has also been a qualitative
demonstration of the possibility of synaptic rewiring increasing the
stability of learnt patterns. The accuracy of preferred locations for
target neuronswill not necessarily improvewhen synapses are ini-
tially distributed around ideal locations. The division of mapping
quality into the quantities of mean σaff and mean AD is a useful
means for investigating these effects, and a method of applying
statistical significance tests has been demonstrated which avoids
possible biases in order to extract highly significant effects from
small-scale simulations.

Acknowledgements

This work was funded by EPSRC. We are grateful to Guy Billings
for providing the basis of the simulator code, and to Adrian Haith
and Chris Williams, as well as others at the Institute of Adaptive
and Neural Computation, for mathematical insights.

References

Balice-Gordon, R., & Lichtman, J. (1993). In-vivo observations of pre- and
postsynaptic changes during the transition from multiple to single innervation
at developing neuromuscular junctions. Journal of Neuroscience, 13(2), 834–855.

Bamford, S., Murray, A., & Willshaw, D. (2010). Large developing receptive fields
using a distributed and locally reprogrammable address-event receiver. Neural
Networks, IEEE Transactions on (in press).

Bell, C., Han, V., Sugawara, Y., & Grant, K. (1997). Synaptic plasticity in a cerebellum-
like structure depends on temporal order. Nature, 387, 278–281.

Bi, G., & Poo, M. (1998). Synaptic modifications in cultured hippocampal neurons:
Dependence on spike timing, synaptic strength, and postsynaptic cell type.
Journal of Neuroscience, 18, 10464–10472.

Billings, G., & vanRossum,M. (2009).Memory retention and spike timing dependent
plasticity. Journal of Neurophysiology, 101, 2775–2788.

Bofill-i Petit, A. (2005). An analogue VLSI study of temporally-asymmetric Hebbian
learning. Ph.D. thesis. University of Edinburgh.

Brader, J., Senn,W., & Fusi, S. (2007). Learning real world stimuli in a neural network
with spike-driven synaptic dynamics. Neural Computation, 19(11), 2881–2912.

Buffelli, M., Busetto, G., Bidoia, C., Favero, M., & Cangiano, A. (2004). Activity-
dependent synaptic competition atmammalian neuromuscular junctions.News
in Physiological Sciences, 19, 85–91.

Butts, D., Kanold, P., & Shatz, C. (2007). A burst-based ‘‘Hebbian’’ learning
rule at retinogeniculate synapses links retinal waves to activity-dependent
refinement. PLoS Biology, 5(3), e61.

Chklovskii, D., & Koulakov, A. (2004). Maps in the brain: What can we learn from
them? Annual Review of Neuroscience, 27, 369–392.

Chklovskii, D., Mel, B., & Svoboda, K. (2004). Cortical rewiring and information
storage. Nature, 431, 782–788.

Colman, H., Nabekemura, J., & Lichtman, J. (1997). Alterations in synaptic strength
preceding axon withdrawal. Science, 275, 356–361.



S.A. Bamford et al. / Neural Networks 23 (2010) 517–527 527
Creutzfeldt, O., Innocenti, G., & Brooks, D. (1974). Vertical organization in the visual
cortex (area 17) of the cat. Experimental Brain Research, 21, 313–336.

Davison, A., & Fregnac, Y. (2006). Learning cross-modal spatial transformations
through spike-timing- dependent plasticity. Journal of Neuroscience, 26,
5604–5615.

Elliott, T., Howarth, C., & Shadbolt, N. (1996). Axonal processes and neural plasticity
i: Ocular dominance columns. Cerebral Cortex, 6, 781–788.

Elliott, T., & Shadbolt, N. (1998). Competition for neurotrophic factors: Ocular
dominance columns. Journal of Neuroscience, 18, 5850–5858.

Elliott, T., & Shadbolt, N. (1999). A neurotrophic model of the development of the
retinogeniculocortical pathway induced by spontaneous retinal waves. Journal
of Neuroscience, 19, 7951–7970.

Gaze, R., Keating, M., & Chung, S. (1974). The evolution of the retinotectal map
during development in xenopus. Proceedings of the Royal Society of London. Series
B, Biological Sciences, 185, 301–330.

Goodhill, G. (1993). Topography and ocular dominance: A model exploring positive
correlations. Biological Cybernetics, 69, 109–118.

Grutzendler, J., Kasthuri, N., & Gan, W. (2002). Long-term dendritic spine stability
in the adult cortex. Nature, 420, 812–816.

Gutig, R., Aharonov, R., Rotter, S., & Sompolinsky, H. (2003). Learning input
correlations through nonlinear temporally asymmetric Hebbian plasticity.
Journal of Neuroscience, 23(9), 3697–3714.

Guyonneau, R., Van Rullen, R., & Thorpe, S. (2005). Neurons tune to the earliest
spikes through STDP. Neural Computation, 17, 859–879.

Hebb, D. (1949). The organization of behavior: A neuropsychological theory. NewYork:
Wiley.

Holmes, N., & Spence, C. (2005). Multisensory integration: Space, time and
superadditivity. Current Biology, 15, 762–764.

Hubel, D., & Wiesel, T. (1968). Receptive fields and functional architecture of
monkey striate cortex. Journal of Physiology, 195, 215–243.

Hubel, D., Wiesel, T., & LeVay, S. (1977). Plasticity of ocular dominance columns in
monkey striate cortex. Philosophical Transactions of the Royal Society of London.
Series B, Biological Sciences, 278(961), 377–409.

Jun, J., & Jin, D. (2007). Development of neural circuitry for precise temporal
sequences through spontaneous activity, axon remodeling, and synaptic
plasticity. PLoS One, 8.

Kampa, B., Letzkus, J., & Stuart, G. (2007). Dendritic mechanisms controlling spike-
timing-dependent synaptic plasticity. Trends in Neurosciences, 30(9), 456–463.

Knudsen, E., du Lac, S., & Esterly, S. (1987). Computational maps in the brain. Annual
Review of Neuroscience, 10, 41–65.

Linsker, R. (1986a). From basic network principles to neural architecture:
Emergence of orientation columns. Proceedings of the National Academy of
Sciences of the United States of America, 83, 8779–8783.

Linsker, R. (1986b). From basic network principles to neural architecture:
Emergence of orientation selective cells. Proceedings of the National Academy of
Sciences of the United States of America, 83, 8390–8394.

Linsker, R. (1986c). From basic network principles to neural architecture:
Emergence of spatial-opponent cells. Proceedings of the National Academy of
Sciences of the United States of America, 83, 7508–7512.

Masquelier, T., & Thorpe, S. (2007). Unsupervised learning of visual features through
spike timing dependent plasticity. PLoS Computational Biology, 3, e31.

McLaughlin, T., Hindges, R., &O’Leary, D. (2003). Regulation of axial patterning of the
retina and its topographicmapping in the brain. Current Opinion inNeurobiology,
13(1), 57–69.

McLaughlin, T., Torborg, C., Feller, M., & O’Leary, D. (2003). Retinotopic map
refinement requires spontaneous retinal waves during a brief critical period of
development. Neuron, 40, 1147–1160.
Miikkulainen, R., Bednar, J., Choe, Y., & Sirosh, J. (2005). Computational maps in the
visual cortex. New York: Springer.

Miller, K. (1998). Equivalence of a sprouting-and-retraction model and correlation-
based plasticity models of neural development. Neural Computation, 10,
529–547.

Miller, K., Keller, J., & Stryker, M. (1989). Ocular dominance column development:
Analysis and simulation. Science, 245, 605–615.

Morrison, A., Aertsen, A., & Diesmann,M. (2007). Spike-timing-dependent plasticity
in balanced random networks. Neural Computation, 19, 1437–1467.

Petersen, C., Malenka, R., Nicoll, R., & Hopfield, J. (1998). All-or-none potentiation at
CA3-CA1 synapses. Proceedings of the National Academy of Sciences of the United
States of America, 95, 4732–4737.

Prestige, M., & Willshaw, D. (1975). On a role for competition in the formation of
patterned neural connexions. Proceedings of the Royal Society of London. Series B,
Biological Sciences, 190, 77–98.

Ruthazer, E., & Cline, H. (2004). Insights into activity-dependent map formation
from the retinotectal system: A middle-of-the-brain perspective. Journal of
Neurobiology, 59, 134–146.

Simon, D., Prusky, G., O’Leary, D., & Constantine-Paton, M. (1992). N-Methyl-D-
aspartate receptor antagonists disrupt the formation of a mammalian neural
map. Proceedings of the National Academy of Sciences of the United States of
America, 89, 10593–10597.

Sjostrom, P., Turrigiano, G., & Nelson, S. (2001). Rate, timing, and cooperativity
jointly determine cortical synaptic plasticity. Neuron, 32, 1149–1164.

Song, S., & Abbott, L. (2001). Cortical development and remapping through spike
timing- dependent plasticity. Neuron, 32, 339–350.

Song, S., Miller, K., & Abbott, L. (2000). Competitive hebbian learning through spike-
timing-dependent synaptic plasticity. Nature, 3, 919–926.

Sperry, R. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and
connections. Proceedings of the National Academy of Sciences of the United States
of America, 50, 703–709.

Toni, N., Buchs, P., Nikonenko, I., Bron, C., & Muller, D. (1999). LTP promotes
formation of multiple spine synapses between a single axon terminal and a
dendrite. Nature, 402, 421–425.

Trachtenberg, J., Chen, B., Knott, G., Feng, G., Sanes, J., Welker, E., et al. (2002).
Long-term in vivo imaging of experience-dependent synaptic plasticity in adult
cortex. Nature, 420, 788–794.

Udin, S., & Fawcett, J. (1988). Formation of topographic maps. Annual Review of
Neuroscience, 11, 289–297.

Willshaw, D. (2006). Analysis of mouse Epha knockins and knockouts suggests
that retinal axons reprogramme target cells to form ordered retinotopic maps.
Development , 133, 2705–2717.

Willshaw, D., & von der Malsburg, C. (1976). How patterned neural connections can
be set up by self-organisation. Proceedings of the Royal Society of London. Series
B, 194, 431–445.

Willshaw, D., & von der Malsburg, C. (1979). A marker inductionmechanism for the
establishment of ordered neural mappings: Its application to the retinotectal
problem. Philosophical Transactions of the Royal Society of London. Series B,
Biological Sciences, 287, 203–243.

Wong, R. (1999). Retinal waves and visual system development. Annual Review of
Neuroscience, 22, 29–47.

Young, J., Waleszczyk, W., Wang, C., Calford, M., Dreher, B., & Obermayer, K. (2007).
Cortical reorganisation consistent with spike timing- but not correlation-
dependent plasticity. Nature Neuroscience, 10, 887–895.

Zhang, L., Tao, H., Holt, C., Harris, W., & Poo, M. (1998). A critical window for
cooperation and competition among developing retinotectal synapses. Nature,
395, 37–44.


	Synaptic rewiring for topographic mapping and receptive field development
	Introduction
	Review
	Synaptic plasticity
	Topographic maps
	Activity dependence vs. independence
	Weight vs. wiring plasticity in topographic map models
	Lateral interactions in target layer


	Model
	Overview
	Details of the model

	Methods
	Experimental parameters
	Analysing topographic map quality

	Results and discussion
	Receptive field spread and the effect of rewiring
	Receptive field centres
	The role of input correlations
	The effect of rewiring on pattern stability
	Limitations of the model and future directions

	Conclusions
	Acknowledgements
	References


