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Abstract—Analogue and mixed-signal VLSI implementations of
Spike-Timing-Dependent Plasticity (STDP) are reviewed. A cir-
cuit is presented with a compact implementation of STDP suitable
for parallel integration in large synaptic arrays. In contrast
to previously published circuits, it uses the limitations of the
silicon substrate to achieve various forms and degrees of weight
dependence of STDP. It also uses reverse-biased transistors to
reduce leakage of a capacitance representing weight. Chip results
are presented showing: various ways in which the learning
rule may be shaped; how synaptic weights may retain some
indication of their learned values over periods of minutes; and
how distributions of weights for synapses convergent on single
neurons may shift between more or less extreme bimodality
according to the strength of correlational cues in their inputs.

I. INTRODUCTION

A. Spike-Timing-Dependent Plasticity

Synaptic weight plasticity is a fundamental element of adapt-
ability and memory in neural systems. STDP is an elaboration
of Hebbian learning applicable in spiking neural systems,
in which the modulation of synaptic weight is based on
the relative timing of spikes produced by the pre-synaptic
and post-synaptic neurons. Bi and Poo [8] observed that in
cultured hippocampal neurons, the potentiation or depression
of a synapse was dependent on the temporal order of induced
pre- and post-synaptic activity. In this study [and in [36, 56]],
pre-synaptic activity preceding post-synaptic activity cause
potentiation and vice versa, (though in other studies the
opposite temporal dependence has been observed [7] as well
as symmetric temporal dependence [1]). Such STDP, as it has
become known, was predicted prior to these observations in
computational models [19] and has since been investigated
extensively in computational neuroscience (the historical ante-
cedents of STDP are traced in more detail by Morrison et al.
[40] p. 481 and by Markram et al. [37]).

Song et al. [47] modelled STDP in a way which has been used
in many subsequent studies, as follows. A pre-synaptic spike
at time tpre and a post-synaptic spike at time tpost modify the
corresponding synaptic weight by w → w + F (∆t), where
∆t = tpre − tpost and:

F (∆t) =

{
a+.e

( ∆t
τ+

)
, if∆t < 0

−a−.e
(−∆t
τ−

)
, if∆t ≥ 0

}
(1)
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(a) Additive
(Song et al. 2000)

W
ei

gh
t c

ha
ng

e

0 0.5 1
−1

−0.5

0

0.5

1

a
−
=0.1

a
−
=0.5

a
+
=0.1

a
+
=0.5

(b) Multiplicative
(Kistler and van Hemmen 2000)
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(c) Mixture
(van Rossum et al. 2000)
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Figure 1: Theoretical models of STDP functions. Graphs (a)-(d) shows
weight change (y axis) against initial weight (x axis). Lines link the effect
of synaptic updates for the entire range of (normalised) initial weight for
a particular magnitude of weight change; weight changes a+/− are swept
through [0.1, 0.5]. Each graph shows potentiation (above) and depression
(below). Dashed diagonal lines demark hard boundaries; for example the
point 1,1 lies beyond the right-most dashed line, and is unreachable because
a synapse with a weight of 1 is already at its maximum and cannot therefore
experience a positive weight change. (a) Weight-independent learning rule
[47]; (b) weight-dependent rule [30]; (c) mixture of weight-independent poten-
tiation and weight-dependent depression [49]; (d) function which interpolates
between weight-dependent and -independent rules, [22], for µ = 0.5 (see
text for explanation). (e) Exponential decay of weight change against time
difference between pre- and post-synaptic spikes; τ = 20 ms. In (a)-(d) all
weight changes are maximised w.r.t. the exponential decay (i.e. at ∆t = +/-0),
and in (e) weight changes disregard any weight-dependent effects.

where a+/− are peak magnitudes of weight changes relative
to the full weight range and τ+/− are time constants for po-
tentiation and depression respectively (experimental evidence
suggests time constants of around 20 ms). This is cumulative
for all pre- and post-synaptic spike pairs. w is bounded in the
range 0 ≤ w ≤ 1. The weight is then used to instantaneously
increase the excitatory conductance of the neuronal membrane
on the arrival of a spike and this conductance decays exponen-
tially thereafter. Fig. 1(a) visualises this rule on a graph which
plots peak weight change against initial weight; fig. 1(e) plots
the more familiar view of weight change against ∆t.

This model was used to show that in a neuron whose dendritic
synapses implemented STDP, provided that a+τ+ < a−τ−,
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the synaptic weights would diverge into a strong group and
weak group (a bimodal distribution), with the effect that: (a)
output spike rate was held within a narrow range relative to
the range of mean input frequencies applied; (b) groups of
synapses whose input spikes were more correlated, i.e. more
likely to arrive within a narrow time window of each other,
would be preferentially strengthened over synapses whose
input spikes were less correlated. (a) is interesting as it is
a form of homeostatic regulation and (b) is interesting as it
allows unsupervised learning based on input correlations.

Other authors investigated multiplicative update rules, which
assume linear attenuation of potentiation and depression as
the upper and lower boundaries of weight, respectively, are
approached. For example, Kistler and Van Hemmen [30] used
the following function (using the same terms as equation 1,
above):

F (∆t) =

{
(1− w)a+.e

( ∆t
τ+

)
, if∆t < 0

−wa−.e
(−∆t
τ−

)
, if∆t ≥ 0

}
(2)

These rules are visualised in fig. 1(b). Van Rossum et al. [49]
investigated a mixture of weight-independent potentiation and
weight-dependent depression (fig. 1(c)), based on an experi-
mental observation by Bi and Poo [8]. Where multiplicative
rules are used, a unimodal distribution of synaptic weights
results, but competition fails to achieve robust segregation of
groups of synapses and the length of retention of any learnt
correlations is greatly reduced [9].

Following this, Gutig et al. [22] developed a generalised STDP
rule which allowed for a tunable degree of weight dependence,
using the following function (again, adapted to use the same
terms as above):

F (∆t) =

{
(1− w)µa+.e

( ∆t
τ+

)
, if∆t < 0

−wµa−.e
(−∆t
τ−

)
, if∆t ≥ 0

}
(3)

Thus by changing the parameter µ, the model can capture
a range of update rules between completely additive and
completely multiplicative see fig. 1(d).

They then investigated various parameters for this model to
determine under what conditions a bimodal distribution would
result and to what extent such symmetry breaking would
capture the correlational structure in the incoming activity.
They found that there are constrained regions of the parameter
space in which the correlational structure of the inputs can be
captured by resulting synaptic weight distributions, and that
the sensitivity of the outcome to differences in the amount of
correlation between competing groups was maximised with
0 < µ < 1. Thus a degree of weight dependence can
improve the ability of STDP to act as a correlation detection
mechanism, and there is a trade-off between this effect and
the reduction in the stability of learnt patterns.

There has been continued research and debate about the
nature of STDP and its relevance as a candidate mechanism

for memory and learning [40, 37]; a few points are worth
mentioning: different temporal windows for plasticity have
been mentioned above, and synapses at different locations
on dendritic trees can have different temporal windows [32];
alternative models which update weight based on post-synaptic
voltage rather than post-synaptic spike times can achieve
similar performance and better matching to data [12, 15]; the
relationship with prior knowledge about rate-based LTP and
LTD is an active question, with some but not all observations
of frequency dependence consistent with the models of STDP
presented above; some models consider only the interaction of
spike pairs nearest in time whereas others consider all possible
pairings [40, section 4.1.2]; an STDP rule based on triplets of
spikes rather than pairs can better match certain biological data
[41]; the question of the underlying cellular mechanisms of
STDP is unresolved - some models postulate internal synaptic
variables, and these variables may be related to specific
molecules [45]; even the nature of the synaptic weight is in
question - it may be related to number of receptors or probab-
ility of vesicle release [45, 35], each hypothesis with different
implications for frequency dependence. Notwithstanding all
these possible elaborations, rules similar to the formalism of
Song et al. [47] have been used to investigate: topographic
map formation [46, 5]; the response to latency in inputs [23];
visual feature map learning [38]; receptive field reorganisation
[53]; learning cross-modal spatial transformations [16]; the
formation of synfire chains [29]; etc.

B. Neuromorphic implementations of STDP

Beyond its attractive computational properties, there are some
practical reasons for STDP to be of interest to neuromorphic
engineers: firstly, as it is based on spike timings it fits with
a dominant paradigm of event-based neuromorphic circuitry
for which much infrastructure has been developed; secondly,
given a predominant design style in which synapse circuits are
physically implemented contiguously with their post-synaptic
neuron soma circuits, STDP is a form of Hebbian learning
which only requires information which is anyway available
physically at or close to the synapse circuit (i.e. the timings
of pre- and post-synaptic spikes) and thus can have a local
implementation which does not add to long-distance commu-
nication overheads. Due in part to these factors, there is the
possibility of relatively compact circuit implementations. A
number of STDP circuits have been published, and these are
briefly reviewed in this section. Issues of weight dependence
and weight stability are then specifically discussed in the
following two sections respectively.

Häfliger et al. [26] produced a circuit in advance of the
publication of the first biological evidence for STDP which
nevertheless demonstrated some of its computational proper-
ties, and introduced some features common to later STDP
circuits. Synaptic weight is represented by a voltage stored
across a capacitor; this voltage is used to gate a transistor as
part of a synapse circuit which passes charge to a neuron soma
circuit and thus affects the efficacy of the synapse. Changes
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are made to the weight capacitance upon the arrival of post-
synaptic spikes, based on a value stored on another capacitor.
This other capacitor is used to accumulate the effect of pre-
synaptic spikes in the form of a leaky integrator. A differential
pair then compares the value on the second capacitor to a
threshold, in order to determine the direction and magnitude
of the plasticity, which is actually applied as a current to the
weight capacitance for the brief duration of a digital pulse
representing the post-synaptic spike. Gordon and Hasler [21]
implemented a qualitatively similar learning rule using floating
gate transistors for storage and adaptation of synaptic weights
(they have recently published a method for evoking STDP
from floating gate transistor synapses [42]; Liu and Mockel
[34] also achieved this, with a system that makes weight
updates only after an accumulation of events, thus slowing
the damage caused by hot-electron injection).

Indiveri et al. [27] presented a symmetrical circuit with two
leaky integrators. One is augmented on the arrival of pre-
synaptic spikes and decays towards one of the power rails,
whereas the other is augmented in the opposite direction on
the arrival of post-synaptic spikes and decays towards the other
power rail. The first integrator therefore represents a potential
for potentiation, which is then used, by means of gating a
transistor, to increase the weight upon the arrival of a post-
synaptic spike. The other integrator represents a potential for
depression, which is used to decrease the weight upon the
arrival of a pre-synaptic spike (potential for potentiation and
potential for depression will be collectively referred to below
as potentials for plasticity). The circuit therefore implements a
learning rule with similarities to that described in equation 1,
but (a) the magnitude terms a+/− were implemented by pulse

lengths and then the term a+.e
( ∆t
τ+

) and the corresponding
depression term were limited in magnitude by further biases,
creating time windows for plasticity which are not exponential
decays; (b) in application, the voltage representing weight was
limited to a range in which it could be used as a subthreshold
bias in a synapse circuit, altering the interpretation of weight-
change rules (this will be discussed below in section I-C).

Bofill-i Petit and Murray [11] was the first published circuit
which (given a certain parametrisation) offers a close fit to
equation 1. This is also based on the principle of two leaky
integrators which modulate increments and decrements to
a weight capacitor, and contains two notable elaborations:
(a) given that the synapse circuits are intended to be laid
out contiguously to their post-synaptic neuron circuit, the
leaky integrator which accumulates the potential for depression
based on post-synaptic spikes is implemented only once per
neuron and the effect is distributed backwards to each of its
dendritic synapses, for a possible space saving compared to
having the integrator in each synapse circuit [27] (a current
mode implementation and associated mirroring erodes the
space saving, however); (b) the integrator of the potential for
potentiation is modified to allow a tunable degree of weight
dependence (this will be discussed below in section I-C).

Koickal et al. [31] presented another symmetrical circuit based
on two leaky integrators, with the difference being that the leak

and weight changes are both implemented by OTAs instead
of single transistors. Charging of the weight capacitance is
implemented with a unity gain buffer driving towards the
instantaneous value of the leaky integrator representing the
potential for plasticity, rather than towards a hard weight
limit, introducing an unusual form of weight dependence
in which, for example, a weak temporal correlation which
should lead to a small potentiation according to the rules of
equation 1 (the theoretical target rule stated in the paper),
may in fact lead to depression if the synapse already has a
high weight. Tanaka et al. [48] also used OTAs for weight
changes but used them in open loop configuration in order to
achieve a standard (antisymmetric) learning function, as well
a symmetrical function [1].

Schemmel et al. [44] introduced STDP circuitry for use in a
system with an intended speed-up factor of several orders of
magnitude over real-time operation. Desiring high accuracy
for weight changes and stable weight storage, they stored
and refreshed weight digitally at each synapse with digital-to-
analogue conversion (see also section I-D). The circuit which
actually implements weight changes operates digitally at the
periphery of the chip and is shared sequentially by all syn-
apses; the advantage of locality and reduced communication
is therefore sacrificed in this design for the advantages of
compactness and the ability to programme different weight-
change rules (the weight change rules are held as a pre-
calculated look-up table). There is nevertheless local sym-
metrical circuitry for accumulation of plasticity events. This
circuitry sacrifices the possibility of operating cumulatively
over all pre- and post-synaptic spike pairs, in order to benefit
from a dual mode of operation in which decay of a potential
for plasticity occurs until a complementary spike arrives,
switching the mode of the circuit to accumulation of plasticity
concurrently with decay of the potential for the complementary
form of plasticity.

The circuit of Arthur and Boahen [2] yet again uses comple-
mentary leaky integrators for accumulation of the potentials
for plasticity, with the difference that these potentials are
thresholded upon the arrival of the complementary spike to
give all-or-nothing potentiation or depression events of binary
synaptic weights (see also section I-D).

As a counterpoint to these examples in which analogue integ-
ration and decay of spike events may lead to either analogue
[26, 11, 27, 31] or digital [2, 44] updates to a weight value,
the implementation of Vogelstein et al. [51] uses an array of
analogue synapses addressed by digital events but uses an off-
chip microcontroller operating over RAM for a completely
digital serial implementation of STDP. Other researchers such
as Cassidy et al. [14] work on digital FPGA implementations
of neural networks including STDP but the focus in this review
is on analogue and mixed-signal implementations.

A parallel line of work pursued by Fusi et al. [18, 3, 39]
has used alternative learning rules similar to some models
mentioned in section I-A. Plasticity events occur on pre-
synaptic spikes and their polarities are determined by the
level of the post-synaptic neuron’s membrane potential. This
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is taken as indicative of the likely timing of a post-synaptic
spike, since a neuron which has just spiked may have a low
membrane potential whereas a neuron which is just about to
spike may have a high membrane potential. In this way, spike-
based correlation detection is recovered which has similar
properties to the form of STDP presented in equation 1 but
without the need to integrate post-synaptic spikes.

Finally, with the recent resurgence of interest in memristive
devices has come the suggestion that a certain form of
memristor which might become available in standard VLSI
processes would have the ability, on its own, to behave as
a synapse which implements STDP. Such a system has been
modelled by Zamarreno-Ramos et al. [54] and a similar system
has been tested for a single fabricated device by Jo et al.
[28] (employing pulse-length modulation to define learning
windows).

C. Weight dependence in neuromorphic STDP

The implementation of the different forms of weight depend-
ence presented in section I-A in neuromorphic synapse circuits
is now addressed. Zamarreno-Ramos et al. [54] showed that
memristor-based synapses would deliver a weight-dependent
form of STDP due to the physical limitations of memristors;
this weight-dependence is evident though unnoted in the data
of Jo et al. [28, figure 2a]. No one has yet presented a way to
control the degree of weight dependence in memristor-based
STDP. The CMOS STDP implementation of Bofill-i Petit and
Murray [11] has weight-dependent potentiation and weight-
independent depression, the (possibly unintentional) opposite
of the learning rule observed by Bi and Poo [8] and modelled
by Van Rossum et al. [49]. The amount of weight dependence
is controllable and is achieved by using the weight voltage to
generate a current which is used to modulate the magnitude
of increments to the potential for potentiation. This requires 4
additional transistors and an additional continuously operated
current. Although it is possible to explicitly engineer weight
dependence like this, it may be more efficient if the natural
limitations of transistors could be employed to provide weight
dependence, as the natural limitations of the memristors of
Jo et al. [28, figure 2a] seem to. The circuit which will be
presented in section II takes just this approach, yet also allows
the degree of weight-dependence to be controlled.

The bounding of the weight range should also be considered.
Where a capacitance is used to model an analogue weight, the
power rails which plasticity events are sourced from or sunken
to provide hard limits to the weight. Thus there is no need to
explicitly implement the bounding represented by the dashed
lines in fig. 1 - such bounding comes for free as a physical
limitation. Various implementations mentioned above utilise
this effect [11, 48]. Other implementations could also utilise
this effect but in practice have tighter bounds set by additional
active bistability mechanisms [27, 39].

The floating-gate transistor implementations of STDP by both
Ramakrishnan et al. [42] and Liu and Mockel [34] are weight
dependent in a different manner to that modelled in equation

2, in which the magnitude of potentiation is related by a power
law to the current weight rather than to the difference of
the current weight from its maximum level; potentiation is
thus facilitated rather than limited as weight increases. The
application of the weight voltage from the circuit of Indiveri
et al. [27] (also [39]) as a subthreshold bias in a synapse circuit
effectively creates this same form of weight dependence,
although with an exponential relationship of “weight” voltage
to synaptic efficacy. For synapses with discrete STDP circuits,
however, [11, 27, 31] (as opposed to single device synapse
designs [28, 42]) it is possible to dissociate the profile of
the “weight” voltage from its interpretation by downstream
circuitry for creating synaptic currents. The linearised synapse
circuit of Bofill-i Petit and Murray [11] could be used with
the subthreshold STDP circuit of Indiveri et al. [27]; to do so
would remove the aforementioned weight dependence, relating
the weight voltage linearly to synaptic current. Given this
assumption, the STDP would be almost but not quite weight-
independent; the transistors which source and sink current
to and from the weight voltage operate in the subthreshold
region, in which their drain-source current is independent from
their drain-source voltage, except in a narrow range in which
Vds < 4KT , i.e.≈ 100 mV. Because there is a stack of 3
transistors leading from the weight capacitance to each power
rail, the range in which this effect may be noticed is exten-
ded, and because one of these transistors operates in strong
inversion, some weight-dependent reduction in plasticity in the
direction of the boundaries may be observed throughout the
entire range of weights. Complete weight dependence is not
possible because of the inability of transistors to act as perfect
current sources. This fact will be used in the circuit which will
be presented in section II.

D. Weight stability in neuromorphic STDP

A major obstacle to the implementation of weight plasticity is
that for long-term plasticity there needs to be a way of holding
a continuously valued variable at a constant level. Synaptic
weight is often implemented as a voltage across a capacitor,
as in several of the implementations discussed in the previous
section. However this is subject to leakage such that any learnt
value will be lost over a period of milliseconds or seconds.

One solution (the aforementioned bistability mechanism [18,
27, 3, 39]) is to use weak positive feedback from an amplifier
to drive the weight value either upwards or downwards away
from a central threshold, yielding a distribution of weights
which are bistable; they can take any value in the short
term but in the long term they have only two stable states,
potentiated or depressed.

Arthur and Boahen [2] went further, as noted above, modelling
weights as having only two states even in the short term
and using a static ram element to store this value, which
could then be switched if an accumulation of either poten-
tiating or depressing events surpassed a certain threshold. In
a complementary approach, Häfliger and Riis [25] created
an analogue memory element with many stable states, and
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this was applied to synapses using an afore-mentioned STDP-
like learning rule [24], though the implementation is bulky,
requiring an amplifying element for each stable state; the
circuit might be made space efficient by the use of time-
multiplexing, however, along the lines of other multi-value
stabilisation schemes [50].

An alternative solution is to use floating-gate technology; if
synapse weights are stored as charge on floating gates then a
learnt patterns of weights can be stable even in the absence of a
power supply. Gordon and Hasler [21] and Ramakrishnan et al.
[42], as noted above, used this technology for compact imple-
mentations of various spike-timing-dependent learning rules.
Memristors are another candidate non-volatile storage tech-
nology which promises yet more compact synapses [28, 54].
Zhang et al. [55] used a further non-volatile technology (ionic
electronic hybrid transistors) for a compact implementation of
STDP. Their implementation is actually of a device which,
together with surrounding pulse-handling circuitry, passes on
a spike after a delay, where it is the delay that is subject to
plasticity according to the relative timing of the incoming pulse
to a further pulse; it remains to be seen if this mechanism can
be used to deliver a more standard synaptic behaviour.

Another approach is to digitise the weight with a chosen level
of accuracy; then it can be stored in standard memory. Such
a digital memory has previously been used to periodically
refresh local analogue storage of weights on capacitors [17].
More recently it has been used advantageously to allow
synapses to become virtual rather than physical devices, so
that one physical device can act as all the incoming synapses
for a neuron, by sequentially receiving the weight information
for each incoming spike and acting accordingly [20, 52].
This achieves a possible saving in area but with higher
communication overheads.

Regarding the aforementioned approach of introducing bista-
bility, Bofill-i Petit [10] argued that (weight-independent)
STDP is inherently bistable and that this fact should be
utilised to bypass the problem of volatile weight storage,
rather than, for example, introducing explicit bistability. Such
an approach is viable in situations where the input which
leads to learnt patterns of weights is continuous. In the
absence of such input, weights will converge on preferred
levels due to leakage currents. The work presented in this
paper is part of a project based on an alternative approach:
by allowing weight distributions (which can change rapidly
and are stored in volatile memory on capacitors) to influence
network topology (which changes slowly and is stored in stable
memory elements), features learnt from input can continue to
influence the behaviour of a network long after the original
input has occurred and the immediate memory trace has faded
(the interested reader is directed to [6]). Notwithstanding this
approach, steps are also taken to reduce leakage currents so
as to maximise the lifetimes of memory traces stored on
capacitors, as will be seen in section II.

ShiftedGnd

ShiftedVdd

Vdd

Gnd

nPostPulse

PrePulse

nPot

Dep

poly-poly

pMOSCAP

nMOSCAP

HighLim

LowLim

Weight

M1

M2

M3

M4

M5

M6

C1

M7

M8

Weight changes: Hard boundaries: Capacitance choices:

Figure 2: Proposed STDP circuit. M1-4 allow increments and decrements
to the weight. Optional transistors M5-6 apply hard limits to the weight. C1
and M7-8 offer different choices for capacitive weight storage.

II. CIRCUIT DESIGN

A. Proposed STDP circuit

The proposed STDP circuit follows the archetypal form ap-
parent in many of the implementations reviewed in section
I-B, by having a symmetrical design with leaky integrators
for potentials for plasticity and by pulling up and down on a
capacitance representing weight to implement plasticity events.
Two novelties are presented. One is the application of a known
principle for reducing weight leakage and thereby increasing
the duration of learnt memories. The other is a method of
introducing a variable amount of weight-dependence which
does not require specific additional circuitry to do so but rather
uses the limitations of CMOS to its advantage.

Fig. 2 shows the proposed circuit, which has been implemen-
ted in the AMS 0.35 µm 4-metal 2-poly process. The central
weight voltage is stored across a capacitor. Three choices are
shown for the implementation of this capacitance to the right
of the graph, although it is intended that only one should be
used in a given implementation; there is a poly-poly capacitor
C1; then there are pMOSCAP (M7) and nMOSCAP (M8)
structures, which benefit from greater capacitance for the same
area (about 4× more in the process used), but have a reduction
in capacitance when the weight voltage gets close to their
respective thresholds.

Incoming signals Dep and nPot represent the potentials for
depression and potentiation respectively, which are created by
leaky integrator circuits (the design of which is deferred to
section II-B). The prefix n of nPot is to indicate that it is neg-
atively defined, i.e. a low voltage represents a high potential
for potentiation. Incoming signals PrePulse and nPostPulse are
for digital pulses representing pre-synaptic and post-synaptic
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spikes respectively. Although this circuit is intended to run at
realistic biological time scales, these pulses are intended to be
on the order of 10 ns in duration, somewhat shorter than the
pulses used by e.g. Koickal et al. [31].

The stack of transistors M1-4 allow increments and decre-
ments to the central weight voltage. The stack is sourced by
ShiftedVdd and sinks to ShiftedGnd. These power rails are
intended to be shifted inwards with respect to the outer power
rails Vdd and Gnd; for example Vdd = 3.3 V, ShiftedVdd = 3.1
V, and ShiftedGnd = 0.2 V, all w.r.t. Gnd. The spike signals
PrePulse and nPostPulse, however, switch between the outer
power rails, such that when PrePulse is not active, M4 is
negatively biased (likewise for M1 when nPostPulse is not
active). Thus, in a manner suggested by Linares-Barranco and
Serrano-Gotarredona [33], by sacrificing a few hundred mV of
the whole voltage range, the leak from the Weight capacitance
can be reduced to sub-pA levels, greatly increasing the lifespan
of any synaptic weight changes.

When PrePulse is active, the current through M3-4 (and
therefore the amount of depression) is dictated by two para-
meters: the values of Dep and Weight w.r.t. ShiftedGnd. Dep
may vary from its resting level which is set around the
nominal threshold of M3 up to Vdd. Thus transistor M3
will typically operate in strong inversion. Weight may vary
between ShiftedGnd and ShiftedVdd; thus M3 may operate
in either the saturated or linear region. M4, being gated by
Vdd, will always operate in strong inversion and, if M3 and
M4 are of the same dimensions, the drain voltage of M4
will not exceed (ShiftedVdd − ShiftedGnd)/2 and therefore
M4 will not saturate, because V dd− V t− ShiftedGnd will
be greater than the drain-source voltage. For most values of
Dep, the source voltage of M3 will stay close to ShiftedGnd;
nevertheless the shifting of this source voltage according to
the interaction between M3 and M4 complicates an analytical
solution for the current through M3. However, to generalise,
as Weight increases, M3 is more likely to be saturated, such
that the current is only weakly dependent on Weight (through
channel length modulation). As Weight decreases, M3 is more
likely to pass into its linear region, in which the current will
have a stronger dependence on Weight, being polynomially
related with a negative squared term and a positive first-order
term, according to the Sah equation. Raising Dep makes M3
more likely to operate in its linear region. Clearly, the same
comments are valid for M1-2 in a complementary sense for
parameters nPot and Weight whilst nPostPulse is active.

The effect on this circuit of potentiation and depression events
was simulated and the results are shown in fig. 3. The effect
of each type of event was simulated for a range of initial
values for Weight and for a range of values of nPot and
Dep respectively. It can be seen that as the initial level of
Weight moves closer to its boundary in either direction, the
amount of weight dependence of plasticity in that direction
increases; this weight dependence is evoked from the physical
constraint that transistors M2-3 cannot act as ideal current
sources. This is qualitatively similar to the behaviour of the
STDP model of Gutig et al. [22] for intermediate values of µ,
as shown in fig. 1(d). One notable difference is that as Dep
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Figure 3: Simulated performance of STDP circuit. Weight was initialised
at each of a set of values in the range 0.4-3.1 V. For each initial value of
Weight, nPot was swept through a set of values in the range 0.2-2.9 V. For
each of these conditions, a single active-low pulse was applied to nPostPulse

for 10 ns and the resulting rise in Weight was recorded (the capacitance was
a 10 × 10µm poly-poly capacitor); these results are shown on the top half
of the graph, with lines linking sets of results for each value of nPot. The
bottom half of the graph shows a corresponding experiment with depression,
where Weight was initialised in the range 0.2-2.9 V, Dep was set in the range
0.4-3.1 V and pulses were sent in to PrePulse for 2.5 ns (the difference in
pulse width and the remaining differences in magnitude between potentiation
and depression reflects a choice of width-length ratios for transistor pairs M1-
M2 and M3-M4, which were optimised for implementing the parameters of
a model which is not discussed in this paper). The outer boundary dashed
lines mark the region of the graph which can be reached in normal operation.
The left-most dashed line represents the lower boundary of 0.2 V imposed
by setting ShiftedGnd at that voltage, and likewise for the upper limit of
3.1 V imposed by ShiftedVdd. The inner dashed line marked “Lower limit =
1.4” marks an arbitrary lower boundary for Weight which can be imposed if
LowLim is set accordingly (≈ 2 V). Simulation by Spectre within Cadence
using AMS C35B4 process.

increases, the weight dependence becomes more pronounced;
to be more precise, as Dep increases, the value for Weight at
which transistor M3 reaches its boundary of saturation raises,
such that strong weight dependence is apparent for a greater
part of the entire range of Weight. This dependence of weight
dependence on the potentials for plasticity is a behaviour not
predicted or utilised by any of the models discussed in section
I-A. However, it will be shown in section III-A that for a
given distribution of a potential for plasticity, a certain weight
dependence profile can be achieved.

In fig. 3, the left- and right-most dotted lines show the bound-
ary of achievable results for the normal range of operation,
since Weight is bounded in the range 0.2-3.1 V by the shifted
power rails. If however it were possible to raise the lower
boundary for Weight without affecting the behaviour of the
circuit then, at the expense of sacrificing some of the full
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voltage range for Weight, the properties of weight dependence
could be altered. On the graph is marked a hypothetical lower
boundary of 1.4 V. If only the learning rule curves to the
right of this boundary were used then the potentiation would
be much more weight dependent than the depression, as can
be seen by comparing the curves of the lines in this region
of the graph; thus a learning rule similar to (in this case,
the opposite of) Van Rossum et al. [49] could be recovered.
This is the reason for “overflow” transistors M5-6. If the gate
value of nMOS M5, marked as LowLim is raised from Gnd
(where it has been assumed to be in the previous discussion),
then as Weight passes below LowLim − VT , M5 will turn
on and restore Weight to LowLim− VT . In order to use this
mechanism it is necessary to make some assumptions about the
speed of operation of the circuit, since the nominal threshold of
the transistor does not provide a precise boundary; as Weight is
raised above LowLim−VT , M5 will continue to conduct, but
will pass exponentially less current as Weight continues to rise.
At some point, the remaining current will become irrelevant
compared to the rate at which plasticity events change the
weight in the course of normal operation, and LowLim should
be set so that this occurs at the intended lower voltage level.

Between setting LowLim and HighLim, changing the range of
the inner power rails ShiftedVdd and ShiftedGnd, and changing
the average level achieved by Dep and nPot there are many
ways to shape the learning function. These will be explored
further in section III.

B. Further circuitry

The circuit described above has been fabricated on a test
chip and its properties are explored below in section III. In
addition, a version of this circuit was used in a multi-chip
system intended to investigate topographic map formation and
receptive field development through synaptic rewiring. The
circuitry used in that system is described here in order to
contextualise the circuit discussed above and to demonstrate
practical usage. Section III-C presents results obtained from
the multi-chip system.

Fig. 4 shows the synaptic circuitry relevant to STDP. In
this system, weight is negatively defined, and thus w.r.t. the
previous naming convention, Weight→nWeight, nPot→Pot and
so on. Regarding the core circuitry, note that the potential of
M6 to set a lower limit on synaptic efficacy is only partially
realised in this system. In order to interpret the practical
upper limit of nWeight which is achieved by the setting of
HighLim as a synaptic efficacy of zero it would be necessary
to have separate control of the source of M12, setting it so that
when nWeight reaches that upper limit, the amount of current
which passes through M13 upon a spike is so low w.r.t. the
maximum synaptic efficacy as to be considered zero. Other
implementations of the synaptic output could be considered
which translate the range of values provided by nWeight
more linearly into a synaptic output; indeed the downstream
circuitry contains some modifications which go some way

nDepMin

nPrePulse

HighLim

nWeight
synaptic 
output

PotClk1

PotClk2

PotMin

Pot

nDepClk1

nDepClk2
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nPrePulse

nDep

M9

M10

M11

M12

M13

M1

M2

M3

M4
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M16
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M20

Potential for  potentiation:

Potential for depression:
(circuitry central to post-synaptic neuron)

Core STDP: Core synapse:

ShiftedVdd

ShiftedGnd

nPrePulse

PostPulse

ShiftedVdd
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Figure 4: Synaptic STDP circuit. Core STDP: M1-8 is the core circuitry
presented in fig. 2, where M5 is not present as a lower limit was considered un-
necessary for the purposes of this system, and an nMOSCAP (M8) was chosen
as the weight capacitance. Potential for potentiation: M9-13 implement a
leaky integrator. M9 is a pMOSCAP which stores Pot; this is incremented
(typically by several hundred mV) upon a brief pulse nPrePulse; the effect of
one or several pre-synaptic spikes can be accumulated, parametrised by the
pulse length. A switched-capacitor conductance (M10, M12-13) is used to
leak Pot to PotMin. PotClk1-2 provide non-overlapping pulses to control this
leak, thus altering their frequency alters τ+. Designing for clock rates of order
1 KHz allows ms-sensitive timing; clocks are ramped up and down slowly to
minimise disruption to power rails. Potential for depression: M16-20 is a
complementary leaky integrator of the same design; the resulting signal nDep

is common to all the dendritic synapses of a neuron and thus is generated only
once per neuron; its large capacitance and full range operation ensure that any
capacitive coupling from other sources in its routing through the synaptic array
have negligible effect. Core synapse: Upon the arrival of a pre-synaptic spike,
M14 turns on, allowing M15 to deliver current to downstream circuitry, whose
magnitude is modulated by nWeight. The downstream circuitry (not shown)
consists of a further leaky integrator to produce a voltage representing synaptic
conductance, which is used to pass current to a capacitor representing the
neuron’s membrane capacitance, as part of an implementation of an integrate-
and-fire neuron.

towards linearising the effect of nWeight on synaptic efficacy,
though these are not discussed here; the interested reader is
directed to Bamford [4, chapter 3].

The leaks of the integrators are realised by switched ca-
pacitor conductances in this system. This particular design
is however not essential to the novel circuitry presented in
section II-A - a continuous leak could be substituted, as in
Tanaka et al. [48]. The resting levels for the leaks, nDepMin
and PotMin may be set around the nominal thresholds of
M2-3 respectively providing truely exponential decays, or
lower, thus reducing the residual weight change which can
occur due to subthreshold currents on the arrival of isolated
spikes, at the expense of giving the decay a slightly more
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Figure 5: Die photo of 32 neuron × 64 synapse chip.

linear characteristic. Although time windows for plasticity are
commonly modelled as antisymmetric exponential decays, this
is not the only choice, either in biological modelling [43,
figure 1] or in neuromorphic models [27] or for practical
neuromorphic engineering purposes [13].

Following Bofill-i Petit and Murray [11], the leaky integrator
for the potential for depression is situated in the central neuron
circuitry and one copy of the circuit serves all dendritic
synapses. By distributing a voltage rather than a current signal,
the area requirement is reduced because there is no need for
current mirrors at the synapses.

Although nPrePulse is shown as gating M1, M11 and M14,
in fact these come from three separate pulse generators from
global address-event delivery circuitry, so that their durations
(always on the order of 10 ns) can be individually tuned,
thus allowing the increments to Pot, the increments to nWeight
and the magnitude of synaptic events to be controlled separ-
ately (likewise for the two separate applications of PostPulse,
though each neuron contains its own pulse generators for these
signals).

III. RESULTS

The results in section III-A come from a test chip with a
single copy of the circuit from fig. 2, where each of the three
capacitive devices could be connected to or isolated from the
Weight node by means of a transmission gate. Pulses were
produced by a Xilinx Spartan 3 FPGA on an Opal Kelly
XEM3010 integration board; analogue biases were produced
by off-chip DACs and outputs were sampled by off-chip
ADCs. The results in sections III-B and III-C come from a
set up in which 8 chips were controlled by the FPGA and
interconnected through AER. Each chip contained 32 neurons,
where each neuron had 64 synapses (see fig. 5), containing the
circuitry shown in fig. 4. The nWeight values of synapses could
be sequentially buffered off-chip and sampled.

A. Weight dependence

Fig. 6(a) plots chip results for a sweep of potentiation and
depression events similar to that in fig. 3, demonstrating
good qualitative conformance to simulation, and showing the
weight dependence which arises from the transistors’ non-ideal
behaviour.

Fig. 6(b) shows the effect of replacing the poly-poly capacitor
with a pMOSCAP. The capacitance of a MOSCAP collapses if
the gate-bulk voltage is in the region of its threshold voltage,
therefore there is a bulge in the potentiation curves around
2.5-2.9 V as the effect of a potentiation event is to change
the Weight voltage more whilst passing the same amount of
charge. Depression events are larger in the same region. In
fig. 6(c) an nMOSCAP was used instead. In this case the
complementary effect occurs around 0.5 V, although it is less
apparent on the graph because the threshold of an nMOS is
closer to the power rail for the process used.

Fig. 7(a) shows the effect of using transistor M6 to impose a
boundary. With HighLim set to 1.6 V, a de facto upper limit
for Weight of 2.3 V is observed. As noted above, the precise
position of the boundary can only be stated with reference to
the time scale over which the system is used; for the results in
this section, Weight was sampled ≈0.5 ms after the plasticity
events. The effect of this upper limit is that there is much less
weight dependence in potentiation than in depression. This is
because for potentiation, the region in which strong weight
dependence arises from transistor M2 operating in the linear
region is almost completely excluded, whereas for depression,
less of the region in which weak weight dependence arises
from transistor M3 operating in saturation is included. Thus
the learning rule used by Van Rossum et al. [49] is implemen-
ted.

Fig. 7(b) shows the results of the same experiment where a
pMOSCAP is used. In this case the upper limit excluded most
of the region in which the non-linearity of the capacitance
has an effect, thus if a design is intended to operate in
this region, it can benefit from the reduced area required
without suffering from the non-linearity. In fact, a difference
in behaviour between the two graphs can be observed as the
beginning of the non-linearity is included, and the effect is
to increase weight dependence of depression whilst reducing
weight dependence of potentiation, since both potentiation and
depression events have a slightly increased magnitude close to
the boundary. As this may not be clear to the eye, normalised
and rectified averages of the 5 sweeps with the greatest weight
changes for each direction of plasticity from each graph were
fitted to the function y = xµ or y = (1 − x)µ depending on
the direction of plasticity, to find the parameter µ as in the
formalism of Gutig et al. [22] (equation 3). Potentiation gives
µ = 0.15 with poly-poly and µ = 0.09 with a pMOSCAP;
depression gives µ = 0.54 with poly-poly and µ = 0.64 with a
pMOSCAP. Thus the non-linearity of a MOSCAP can provide
a desirable effect in this case.
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Figure 6: Weight dependence of plasticity: comparison of capacitor types. Each graph plots weight change against initial weight. Trials in which a negative-
going pulse of ≈10 ns was applied to nPostPulse in the presence of an externally fixed level for nPot appear as data points in the top half of each graph
(i.e. with positive weight change). data points which share the same level for nPot are linked together by lines. The beginnings of some of these lines are
labelled with the actual voltage applied, e.g. 0.0, 0.5 etc. nPot was swept through the range 0.0-3.3 V with intervals of 0.05 V. Likewise, negative weight
changes appear in the lower half of the graph, achieved by pulses to PrePulse of ≈2-3 ns in the presence of a certain Dep, which was swept through the same
range and is similarly labelled. For each sweep, a range of initial weights was applied. The initial weights were set prior to each trial by lowering and raising
HighLim and LowLim respectively; this method achieves different results in different regions of the whole voltage range, which is why inhomogeneities can
be seen in the positions of initial weights. During each trial, HighLim and LowLim were set to 3.3 V and 0 V respectively. ShiftedVdd and ShiftedGnd were
set to 3.1 V and 0.2 V, respectively, i.e. they were shifted inwards by 0.2 V with respect to Vdd and Gnd. Dashed lines mark theoretical limits for potentiation
and depression. Each data point is the average of 5 trials; this averaging was to reduce the jitter apparent especially in the depression results due to the method
used to create the short pulse. (a) The capacitor storing the weight value was a poly-poly capacitor; (b) the capacitor was pMOSCAP; (c) the capacitor was
nMOSCAP.
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Figure 7: The effect of a shifted boundary. Results of weight sweeps as
in fig. 6, except that HighLim was set to 1.6 V. Initial and final values for
Weight were sampled ≈0.5 ms before and after plasticity events respectively.
The right-most dashed line plots an upper limit of 2.3 V. (a) The capacitor
storing the weight value was a poly-poly capacitor; (b) the capacitor was a
pMOSCAP.

Fig. 8 compares the effect of the two different methods
available for imposing boundaries. In fig. 8(a) HighLim and
LowLim are both brought inwards; the effect is to achieve
low weight dependence in both forms of plasticity. In fig.
8(b) ShiftedVdd and ShiftedGnd are both brought inwards.
In this case, transistors M2 and M3 both operate mainly in
their linear region and the effect is to achieve high weight
dependence in both forms of plasticity. Although in both cases,
the voltage range for Weight is reduced to a similar extent
(≈1.3 V and 1 V respectively), the resulting learning rules are
very different, with (a) approaching the additive learning rule
in fig. 1(a) but (b) approaching the multiplicative rule in fig.
1(b). Clearly, neither the fully additive nor fully multiplicative
case is achieved; each case represents a mixture which can be
fitted to a point in the spectrum of mixtures offered by the
formalism of Gutig et al. [22]. Performing these fits (method
in the figure caption) gives values for µ of 0.13 and 0.64
respectively. These fitted functions are plotted in fig. 1(c),
together with fully additive and fully multiplicative functions
for comparison.

B. Weight stability

With ShiftedGnd and ShiftedVdd set to Gnd and Vdd (3.3 V)
respectively for the circuit in fig. 4, nWeight discharges rapidly
in the absence of plasticity events, at a rate (measured in the
range 1.7 V down to 0.7 V) of ≈700 V/s; for an expected
nWeight capacitance of ≈ 0.5 pF this implies a current of
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Figure 8: Comparison of methods for imposing boundaries (nMOSCAPs were used in both experiments). (a) Experiment as in fig. 6, except that HighLim

= 1.6 V and LowLim = 1.5 V; nominal lower and upper boundary lines plotted at 1 V and 2.3 V respectively (b) ShiftedGnd = 1.5 V and ShiftedVdd = 2.5
V; depression pulses were given the same duration as potentiation pulses ≈10 ns; (HighLim and LowLim were not used, i.e. they were set to the outer power
rails). (c) In order to fit the data to the function in equation 3 in a way which respects its likely usage, Poisson spike trains were constructed for pre- and
post-synaptic neurons, with 1000s of 1 Hz pre and post activity interspersed with 10 s of 100 Hz/1 Hz pre/post, 10 s of 1 Hz/100 Hz pre/post and 10 s of
100 Hz/100 Hz pre/post, in order to capture qualitatively the main firing regimes in which a synapse may find itself. These spike trains were used to construct
traces for the potentials for plasticity, with τ+/−=20 ms, and the magnitudes of the increments and decrements to Dep and nPot respectively upon incoming
spikes were set so that 5% of the potentials used for plasticity events would have been beyond the power rails had the limitation of the power rails not been
present (increments and decrements were ≈1 V). The potentials were sampled at the moments of their respective plasticity events and this distribution was
used to select a distribution of sweeps from the figures where each sweep was selected because the potential voltage which was used for the sweep was
closest to that from the simulated sample. These sweeps were summed together for each direction of plasticity. These summed sweeps were then normalised
in both dimensions, the data for depression was rectified and reversed and the two sweeps then summed together. Data points from fig. (a) affected by the
imposed boundaries were excluded. The final sweep was fitted to the function y = (1 − x)µ to yield fits to the data in (a) (µ = 0.13) and (b) (µ = 0.64);
these are plotted, together with additive (µ = 0) and multiplicative (µ = 1) functions.

≈350 pA, larger even than the higher corner analysis provided
by Linares-Barranco and Serrano-Gotarredona [33] for the
same process. Discharging to Gnd is to be expected since
a pMOSFET has a higher (negatively-defined) threshold with
respect to Vdd than an nMOSFET of the same dimensions has
with respect to Gnd; thus when a pMOSFET is gated by Vdd it
is more deeply subthreshold than an nMOSFET gated by Gnd.
When ShiftedGnd is raised to 0.2 V, and ShiftedVdd is lowered
to 3.1 V, the rate at which nWeight changes is greatly reduced,
as shown in fig. 9. Respectively raising and lowering these
levels further does not decrease the rate of change any further,
suggesting that reverse diode leakage to substrate becomes
dominant at this point. Although learnt weight values begin
to decay immediately, some trace of the learned memory is
retained over several minutes.

C. Collective weight distributions

As described above in section II-B, the STDP circuit was used
in a multi-chip system intended to investigate topographic map
formation and receptive field development through synaptic
rewiring. The role of STDP in that system was to detect
correlations between neighbouring inputs in a topographic
space, providing weight distributions which could then be
used as a basis for synaptic rewiring. The general results
of that system are presented in Bamford et al. [6], and it is

those results to which the interested reader is directed as the
basic demonstration of the ability of this circuit to act in the
appropriate context as a correlation detector. In this paper some
previously unpublished results from that system are presented
which explore the weight distributions which it is capable of
producing.

Spike streams were generated for two groups of virtual neur-
ons and streamed to the multi-chip system. For each on-
chip neuron, half of its dendritic synapses received spikes
from each of these groups. For the first 240 s, spiking input
consisted of simultaneous spikes from a randomly chosen 50%
of the neurons in one group. after 20 ms there was another
simultaneous set of spikes from neurons in the other input
area. After a further 20ms this pattern repeated, with different
randomly chosen neurons constituting the “flash” each time.
Between these flashes there were Poisson-distributed spikes
from all neurons in both input areas with the rate set so that the
total spike rate per pre-synaptic neuron including spikes from
flashes was 20 Hz. For a further 30 s afterwards spiking input
consisted just of Poisson-distributed spikes from all neurons
in both input areas with a fixed rate of 20 Hz. Thus, there
was a longer period of input with intra-group but not inter-
group correlations, followed by a shorter period of input with
no correlations.

Time constants for STDP were τ+ = τ− = 20 ms, achieved by
clock rates for PotClk and nDepClk of ≈ 750 Hz and 2100
Hz respectively (the clock rate for nDep being higher due to
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Figure 9: Weight stability. In all synapses in the multi-chip system, nWeight
was initially set to ShiftedGnd = 0.2 V (whilst ShiftedVdd = 3.1 V and
HighLim = 1.95 V). nWeight was then sampled for each synapse each second,
up to 300s. A selection of these traces are shown for 64 synapses (grey
lines). In a separate experiment, all nWeight voltages were initially raised to
slightly beyond a nominal value for the upper boundary imposed by HighLim
= 1.95 V. Sampling then proceeded as before and traces are shown for the
same 64 synapses. Low synaptic weights rise at different rates whilst high
weights fall at different rates, due to mismatch. The weight of each synapse
asymptotes towards a resting level at which the currents into and out of the
node balance. Simplistically, the trajectory of each nWeight can be modelled
as an exponential decay. As an arithmetic average of exponential curves can be
modelled with a power-law curve, best power-law fits of the rising and falling
trends (over all synapses, not just those pictured) are shown and extended out
to the point at which they cross over (solid black lines). Means and standard
deviations are given at selected times for the weights of all synapses (not just
those pictured) for each of the experiments, showing the quality of the fitting.
While the rising and falling curve for an individual synapse will not cross
but only converge, the distance between the rising and falling trend lines up
to the crossing point (the dotted line) is indicative of the extent to which a
weight will remain deflected away from its resting level after learning has
occurred; thus the rate of reduction of this distance is indicative of the rate at
which learnt memories decay. This distance decays to 90% of its maximum
in 8 s, 75% in 43 s, 50% in 227 s and 0% in 24 mins. The relatively fast
drop in nWeight around 1.9 V in the first few seconds is due to discharging
through M6 in fig. 4.

greater capacitance on the output shared with 64 synapses);
a+ and a− were adjusted ad hoc to achieve mid-range mean
weights; synaptic events contributed an exponentially decaying
kernel of increased membrane conductance with τ = 10 ms;
≈1.5 simultaneous spikes to maximum weight synapses would
cause the input current to the IF neurons to peak at their
rheobase current; neuron membranes decayed with τ = 20 ms.

Fig. 10 shows resulting weight distributions at specific points
during this trial. The left column is a visualisation of the
weight distributions over all the synapses of all the neurons.
The central column is a supplementary view showing the mean
weights for synapses for each neuron. The fact that these

weights are distributed throughout the whole range indicates
that the distributions seen in the left column are generally
present within each neuron rather than being an aggregate
effect across all neurons. During the trial, the weights, which
were initially maximised, underwent depression until the
neurons found their preferred level of activity (recalling the
homeostatic regulation property mentioned in section I-A).
This happened quickly, with the effect apparent even within
the first second of the trial necessary to sample all the weights.
The numbers to the right indicate the level of preference each
neuron developed for one of the two groups of input neurons.
For the preference of a neuron to be absolute, the distribution
of its synaptic weights would have to be completely bimodal
with all of the synapses connected to one group completely
potentiated but all of the synapses connected to the other group
completely depressed. During the intra-group correlations, a
majority of neurons quickly developed strong group prefer-
ences, as indicated by the aforementioned group preference
figures and the maps to the right (the presentation of the 256
neurons in a 16×16 grid is not important to this experiment
as no topographic relations were imposed between neurons
or inputs; the interested reader may wish to understand the
complete context of these results in Bamford [4, chapter 6]).
Strong preferences developed during the first 20-30 s. There
was further slight improvement until 70 s after which the group
preference measure did not change. After 240 s when the
intra-group correlations in the input disappeared, the group
preferences quickly collapsed until after 30 s there was not
much evidence of them remaining.

During this process, the weight histograms to the left show
that the strong correlational cues in the input caused strong
bimodal divergence. Then, when the correlational cues were
removed the average weight distribution reverted to a less
clearly bimodal distribution.

D. Area and power

This section gives indicative figures for the circuit as laid out
in the multi-chip system. The synaptic circuitry in fig. 4 (M1-
15) had an area of ≈ 400 µm2, of which ≈ 260 µm2 is
dedicated to transistors M8-9 which provide the capacitance
for nWeight and nPot respectively. Of the area used by the core
STDP circuitry consisting of M1-4, 6, and 8, more than half of
this area is dedicated to M8. Thus using a MOSCAP instead
of a poly-poly capacitor significantly reduced the area of the
STDP circuit. Capacitances for nWeight (M8), Pot (M9) and
nDep (M20) were designed at ≈ 0.5 pF, although for nDep
there is a significant amount of parasitic capacitance due to it
gating M2 64 times (one for each of the dendritic synapses of
a neuron), raising this to ≈1.4 pF.

Considering energy costs of the STDP circuit, for the weight
to change from its lowest to its highest level and back, nWeight
must be completely charged and discharged; if boundaries are
not restricted as in fig. 8, this would use ≈4 pJ (calculated
using capacitances extracted from layout). For Pot to be
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Figure 10: Relationship of weight distributions to detected correlations. Top
to bottom: during the trial the weights of all 16384 synapses were sampled
starting at the times (in seconds) labelled to the left of the leftmost column
(a complete read-out took ≈1 s). Left: histogram of weights. The number to
the right of each histogram is the mean normalised weight, where the range
of nWeight is between ShiftedGnd = 0.2 V and the de facto maximum weight
yielded by HighLim = 1.95 V. Centre: The mean weight (y axis) for the nth
synapse (x axis) in each neuron, where the synapses in each neuron are sorted
in ascending order of weights. Right: group preferences for neurons. Within
each raster, each cell represents one on-chip neuron. The shade of the pixel
gives the weight of the synapses connected to one of the groups as a proportion
of the weight of all synapses on a scale from white to black. The number to the
left of this visualisation of group preference is the mean of a related measure

of group preference, defined as GroupPreference= 2

∣∣∣∣∑i w
1
i∑

i wi
− 1

2

∣∣∣∣where wi

is the weight of the ith synapse for the target neuron and w1
i is the weight

of the ith synapse only for synapses with pre-synaptic neurons from one of
the groups (an arbitrary choice). The measure therefore gives a value of 1 if
group preferences are absolute, but 0 if there are no group preferences.

completely charged and discharged there is a similar energy
cost. Additionally, every time there is a pre-synaptic spike,
pulses must be generated for transistors M1 and M11. The
cost of generating these pulses is shared amongst all axonal
synapses of the pre-synaptic neuron, and the extra energy
cost specific to a single synapse is the cost of completely
charging and discharging the capacitance of these gates and
the wires leading to them (≈ 300 fJ per synapse in this
implementation). Similar costs are associated with transistors
M4 and M18 upon post-synaptic spikes. For the switched
capacitor implementation of exponential decays presented here
there are also the costs of driving the clocks. The clocks
are global and the additional cost per synapse is the cost

of charging and discharging the gates M12-13 and the wires
leading to them, which is ≈ 60 fJ (there is also an associated
cost per neuron for nDepClk); a 1 KHz clock rate would mean
a continuous power consumption of ≈ 60 pW per synapse.

IV. DISCUSSION

A. Weight dependence

The STDP circuit presented bears comparison with several
circuits which have been reviewed, most notably Bofill-i Petit
and Murray [11] but without an explicit, active mechanism for
weight-change reduction. Fig. 6(a) presented a weight depend-
ence profile which is available from the circuit configuration of
fig. 2. The weight dependence comes from physical constraints
of the transistors, namely their inability to act as ideal current
sources. The methods of controlling weight dependence then
involve selecting regions of this profile by controlling the
boundaries of the weight voltage. Fig. 8 presented the effects
of two different ways to skew the learning rule towards
or away from weight dependence. These two methods are:
using overflow transistors to set boundaries (fig. 8a); and
reducing the voltage range (fig. 8b). The fitted parameters
show the effect on the learning rule in terms of the spectrum
of possible learning rules presented by Gutig et al. [22],
with the first method favouring weight independence and
the second favouring weight dependence. These situations do
not represent extremes of performance but are simply two
examples. Greater weight independence could be achieved by
reducing the average values for the potentials for plasticity; if a
maximally additive rule were actually desired then it would be
sufficient to limit Dep and nPot to levels such that transistors
M2-3 in fig. 2 are operated in subthreshold, and to increase
pulse durations accordingly. This has not been investigated in
this paper however (it would simplify to a solution similar to
that of Indiveri et al. [27]). A completely multiplicative rule
cannot be achieved by this circuit, since the dependence of
plasticity magnitude on Weight in the linear region is not linear.
If strong weight dependence is required together with smaller
plasticity events, this can be achieved to the extent that the
duration of pulses can continue to be reduced; transistors could
also be made longer up to the point at which compactness is
compromised. The ability to control the degree and the form
of weight dependence requires the ability to reinterpret the
usable voltage range for Weight in subsequent circuitry; for
example, for fig. 8a, it must be possible to interpret 1 V and
2.3 V as the minimum and maximum weight respectively, and
interpolation should be linear.

The importance of MOSCAPs in reducing the area of the
circuit was noted in section III-D, but their use affects the
weight dependence profile, as shown in fig. 6(b-c). The region
of the weight dependence profile affected by a MOSCAP can
be avoided by either of the methods shown in fig. 8, and fig.
7 shows how the use of a pMOSCAP can actually help to
provide a better match to the model of Van Rossum et al.
[49].
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Why might it be important to control weight dependence? It
has been shown by Gutig et al. [22] that a moderate degree of
weight dependence can improve the ability of STDP to act as
a correlation detection mechanism. An intuition for why this
may be the case is that with a completely additive learning
rule there can be a great deal of pressure for the synapses to
diverge into a bimodal distribution. In the absence of strong
correlational cues as to which group of inputs should take
control over the firing of the post-synaptic neuron, a bimodal
distribution will form anyway based on spurious correlations
[47, figure 2(a-b)]. Once such a distribution has formed its
composition can be very stable [9], so that there is little chance
of the composition of the winning group changing to favour
correlations in the inputs. According to the analysis in Gutig
et al. [22], as weight dependence of STDP increases, the effect
on a stable distribution of weights of afferent synapses to
a single post-synaptic neuron is that the poles of a bimodal
distribution move closer together until a critical point is passed
at which they form a unimodal distribution. There are many
other factors that can influence the weight distribution, one of
which is the strength of the correlational cues in the inputs.
The results in fig. 10 show that the weights shift between
a strongly bimodal distribution in the presence of strong
correlational cues and a weakly bimodal distribution in their
absence. To be clear, this is not a quantitative demonstration
of increased sensitivity to correlations; it simply suggests
that the behaviour of the system is skewed towards the
bifurcation identified by Gutig et al. [22], with respect to
the behaviour of a system with a fully additive learning rule,
for which results such as those of Song et al. [47, figure
2(a-b)] may be expected. Regarding future work, one could
consider further quantitative investigation, perhaps to the point
of deriving formulae for STDP parameter setting by which
optimal correlation detection performance could be achieved in
given situations. However in the opinion of the authors, it may
be ultimately more rewarding to search for complementary
forms of homeostatic regulation which may automatically alter
parameters to bring a system towards optimal performance.

B. Weight stability

The results in section III-B show that a straight-forward applic-
ation of negative gate-source voltage for reducing subthreshold
leakage current is effective in greatly reducing the speed
at which a capacitor drifts towards a voltage level towards
which it is predisposed. Issues of weight stability and weight
dependence are treated together in this paper for two reasons.
Firstly there is the practical reason that the same mechanism
that reduces the leak from the capacitors (shifted inner power
rails) can also be used to increase weight dependence, as
shown in fig. 8(b). Beyond this, there is a trade-off between the
weight stability offered by the inherent bistability of a weight-
independent learning rule, and the increased sensitivity to
correlations offered by the introduction of a degree of weight
dependence. Even with the reduction of capacitor leakage, the
synapses still lose their learnt weights over a time scale of
only minutes, which is by no means biologically realistic.

This nevertheless allows a much greater time scale in which
synapses can accumulate evidence for correlations before this
memory is either wiped away or consolidated by some other
mechanism. In smaller processes leakage currents will become
higher so that, although the technique of back-biasing the gate
will continue to give an advantage w.r.t. a design such as
Indiveri et al. [27], the time scale over which a weight can
be retained for the same capacitance may be greatly reduced.
Lower capacitance available in scaled-down circuits will also
reduce time constants. Both of these scaling effects will make
complementary stabilisation mechanisms more desirable. This
technique for leakage reduction is compatible with some of
the other mechanisms reviewed in section I-D; for example, a
bistability mechanism could be added [18], or a multistability
mechanism [25]; alternatively, weight distributions can be used
to influence network topology, which can be stable over a
much longer time scale [6].

C. Area and power

Energy consumption figures have been given in section III-D.
For the core circuit, the energy consumption is based on
the charging and discharging of the capacitance representing
weight. However the rate and magnitude of weight changes
is highly dependent on the parametrisation of and inputs to
the system; for example, there are 3 orders of magnitude
difference in values for a+/− used by Song et al. [47] and
Young et al. [53], which would change this element of the
power consumption by 3 orders of magnitude; given such
uncertainties, energy comparisons such as those in Zhang
et al. [55, table 1] may be misleading. Comparing to the
subthreshold design of Indiveri et al. [27], although this circuit
operates instead in strong inversion, this does not increase
energy consumption since much higher currents are simply
used for much shorter periods. Full range operation of Weight
should increase overall energy usage by only a small factor but
if this range is reduced as in fig. 8b then energy consumption
is reduced (Dep and nPot operate across the greater part of
the range in both designs). The choice of a switched-capacitor
implementation for exponential decays of nDep and Pot is not
ideal for power consumption, but this choice is incidental to
the novel circuitry presented in this paper.

In comparison to Bofill-i Petit and Murray [11], which also
provides for a tunable degree of weight dependence, this
circuit does not require explicit circuitry for reducing weight
change magnitude and therefore saves on the area and power
costs associated with that circuitry. The overflow transistors
have an energy cost where they are employed, since increments
and decrements beyond the boundaries they impose are leaked
away. This, however, occurs only when boundaries are exceed,
rather than having a continuous cost (the bistability mechanism
of Indiveri et al. [27] also imposes boundaries and has a
continuous cost).

D. Mismatch

This circuit is affected by mismatch in the following ways.
Transistors M2-3 are mismatched between synapses, altering
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the magnitudes a+/−; as the effect of these is dominated by
high (super-threshold) gate voltages, the effect of mismatch
can be expected to be lower than that in the corresponding
transistors in the design of Indiveri et al. [27]. Transistors
M5-6 are mismatched between synapses, affecting the level
of any imposed boundaries. The timing of external pulse
generators is based on transistor current sources, thus the
pulse lengths can also be expected to vary, again affecting the
magnitudes a+/−. For the multi-chip implementation, the pre-
synaptic pulses were in fact produced by a single generator
for each chip, so calibration could be performed if desired.
The post-synaptic pulses by contrast were produced by circuits
specific to each neuron, and so there is a contribution to the
mismatch of magnitudes a+/− which varies between neurons.
As pulses need to be short, the transistors which control the
timing may be biased above threshold, potentially reducing
the effect of mismatch compared to a subthreshold design
requiring long pulses. Mismatch in leak conductances, whether
in the switched capacitor implementation presented here or in
a continuous implementation [11, 27] affects time constants
τ+/−. The cumulative effect of all these sources of mismatch is
that the critical parameter β = a−τ−/a+τ+ identified by Song
et al. [47] varies between synapses, with the effect that some
are more prone to depression than others. For the multi-chip
system, in an experiment in which β was 3.8, the coefficient
of variation of β amongst synapses was 0.40 (based on weight
change events recorded simultaneously from the same synapse
from each of a set of 16 neurons distributed across 4 of the 8
chips, where the neurons were configured identically and given
identical inputs (feed-forward only) so that any differences in
their behaviour would be attributable to mismatch and a small
amount of noise). It is difficult to assess the importance of
this in the absence of clear applications for such circuitry,
but it has been shown that the aggregate effect of STDP can
be to ameliorate mismatch; Cameron et al. [13] demonstrated
the use of STDP as an engineering solution, and Bamford [4,
section 3.5.7 p. 88] gives a preliminary account of how the
STDP circuits in the multi-chip system presented here can act
to compensate for mismatch in downstream neural circuitry.

CONCLUSION

An analogue VLSI circuit has been presented with a compact
implementation of STDP suitable for parallel integration in
large synaptic arrays. In contrast to previously published STDP
circuits, it uses the limitations of the silicon substrate to
achieve various forms and degrees of weight dependence
of STDP. It also uses reverse-biased transistors to reduce
leakage of a capacitance representing weight. Chip results have
been presented showing: various ways in which the learning
rule may be shaped; how synaptic weights may retain some
indication of their learned values over periods of minutes; and
how distributions of weights for synapses convergent on single
neurons may shift between more or less extreme bimodality
according to the strength of correlational cues in their inputs.
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