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Abstract—A VLSI field-programmable mixed-signal array spe-
cialised for neural signal processing and neural modelling has
been designed. This has been fabricated as a core on a chip pro-
totype intended for use in an implantable closed-loop prosthetic
system aimed at rehabilitation of the learning of a discrete motor
response. The chosen experimental context is cerebellar classical
conditioning of the eye-blink response. The programmable system
is based on the intimate mixing of switched capacitor analogue
techniques with low speed digital computation; power saving
innovations within this framework are presented. The utility of
the system is demonstrated by the implementation of a motor
classical conditioning model applied to eye-blink conditioning
in real time with associated neural signal processing. Paired
conditioned and unconditioned stimuli were repeatedly presented
to an anaesthetised rat and recordings were taken simultaneously
from two precerebellar nuclei. These paired stimuli were detected
in real time from this multi-channel data. This resulted in the
acquisition of a trigger for a well-timed conditioned eye-blink
response, and repetition of unpaired trials constructed from the
same data led to the extinction of the conditioned response trigger,
compatible with natural cerebellar learning in awake animals.

I. INTRODUCTION

Where brain functions are impaired through brain damage or
through degeneration caused by ageing, it may be possible
to develop prostheses which could interact with the brain
in order to replace this functionality. While existing neural
prostheses either provide input to the nervous system (e.g.
cochlear prostheses [1], deep-brain stimulators [2] etc.) or take
output from it (e.g. motor cortical prostheses [3]), a largely
unmet challenge is the creation of devices that take input
from the brain and provide output to it, in order to replace or
supplement the functionality of a circuit internal to the brain,
although software-based prototypes are appearing [4, 5].

The aim of the European ReNaChip project [6] was to provide
a proof of concept for such a closed-loop prosthetic system.
The cerebellum was chosen as a target brain area because its
well-defined inputs and outputs facilitate physical interven-
tions whilst its relatively simple internal structure have proved

fertile grounds for neural modelling from Marr onwards [7].
Eye-blink conditioning was chosen as a well studied target
behaviour against which success can be measured. It is inten-
ded that the replacement system should be biomimetic, i.e.,
its architecture and functionality should mimic the charac-
teristics of the area which it replaces according to a neural
model of the behaviour of the area. Whilst the system is not
specifically intended for clinical application, there has been
a focus on practical constraints such as miniaturisation and
power constraints for implantability. The project has involved
electrode design, neurophysiology, modelling of cerebellar
learning, signal processing methods, real-time system integ-
ration and chip design. This article focuses on chip design,
particularly how a field-programmable mixed-signal array is
used to fulfil the computational requirements. Firstly, in sect.
II, the target system is described, including: the eye-blink
paradigm; electrode placements for recording and stimulation;
signal processing methods for real-time extraction of stimulus
related events from neural recordings; and the model of
cerebellar function which allows on-line learning. Then in
sect. III the chip prototype is introduced and its features
explained. The key experiment by which the performance
of the developed circuitry is demonstrated is the real-time
acquisition and extinction of a learnt timed response based
on in vivo recorded data, for which methods and results are
presented in sect. IV and V, respectively.

II. TARGET PROSTHETIC SYSTEM

A. Eye-blink conditioning

Eye-blink conditioning is a form of classical conditioning that
is commonly investigated with the delay paradigm [8]. An
auditory stimulus (conditioned stimulus - CS) and air-puff to
the eye (unconditioned stimulus - US) are applied according
to the timing scheme in fig. 1a (bottom), in which the CS
onset precedes the US onset by an inter-stimulus interval (ISI)
of a few hundred ms and the two stimuli then co-terminate.
A US alone causes the subject, whether human or rodent, to
blink; this is called an unconditioned response (UR). After
many repetitions of these paired stimuli, however, the subject
learns to blink in response to the CS, prior to the US, at
an appropriate time to anticipate the aversive stimulus; this
is called a conditioned response (CR). It is known that the
cerebellum is necessary for this learning to occur [9]. The
target structure for replacement, therefore, is a microcircuit of
the cerebellum.

The cerebellum has two inputs and one output, as shown in
fig. 1c. Inputs related to all sensory stimuli come from the
pontine nucleus (PN) while sensory inputs related to inherently
aversive stimuli (US) also come from the inferior olive (IO).
Both inputs arrive at the Purkinje cells (PU). Output from
PU is inhibitory to the deep cerebellar nuclei (DN). A learnt
timed response manifests itself as activation of specific DN
cells, from where signals go to premotor nuclei including the
red nucleus and on to motor nuclei, such as the facial nucleus
(FN) from where, in the case of this paradigm, an eye-blink
is elicited.
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Figure 1: (a) System overview: electrodes in PN and IO bring signals to amplifiers; amplified signals are processed leading to detection of CS and US
events, respectively (see b); the detected events are inputs to a model of cerebellar learning (see d); the output triggers a stimulator to elicit an eye-blink
response via an electrode in FN; in a “paired” trial for CR acquisition, a white noise stimulus (CS) and an air-puff (US) occur in the sequence shown at the
bottom, i.e. US starts 0.3 s after CS, and they co-terminate after another 0.1 s; (b) Event detection example for multi-channel data from PN encompassing a
CS event: the period of the CS is shown as vertical lines at 0 s and 0.47 s; incoming data from the PN electrode is amplified, band-pass filtered (300-3000
Hz) and the 3 channels are summed together to yield the top trace; this is rectified (second trace), and then band-pass filtered (0.2-1.6 Hz) to yield the third
trace; hysteretic thresholds, shown as two horizontal lines, are then applied to yield the detected digital event in the bottom trace; the delay of onset detection
of ≈ 100 ms is partly explained by neural transduction through the auditory pathway and mainly by the time taken to aggregate information before making
a decision; the hysteretic threshold captures the duration of the CS event (after the onset delay) without detecting false alarms from the smaller threshold
incursions; magnitudes on y-axis are arbitrary. (c): Simplified cerebellar microcircuit. (d) Cerebellar learning model: CS onset (1) triggers slow reduction of
PU activation; when this goes below a threshold (2) it triggers CR, and after a fixed delay (3) IO is inhibited; synaptic weight (W) rises during CS due to
LTP; the US events shown here do not refer to the protocol in (a) but rather indicate how the learning model responds to paired stimuli with various timings;
a US event prior to CS (4) does not trigger LTD but during CS (5) does cause a fixed amount of LTD (reduction of W); after CR is produced, US events
still trigger LTD (6) until the IO inhibition (3) after which they do not (7); during CS, therefore, W reduces in response to US occurring before and slightly
after CR, and otherwise increases.

The intended overall system is shown schematically in fig.
1a. Recording electrodes are inserted in PN, where a neural
response to the CS can be detected, and in IO, where a
response to the US can be detected. The signals from the
recording electrodes are amplified and go through various
stages of filtration (as detailed in the figure caption and sect.
IV-B), resulting in detections of CS and US events. These are
input to a model of cerebellar function, whose output may be a
timed response to a CS event. This output (the modelled CR)
triggers a stimulator which elicits an eye-blink (behavioural
CR) through an electrode implanted in FN. The system is
therefore meant to bypass and emulate the neural circuitry
that implements learning and effects the appropriately timed
response. The following sections provide more detail on the
aforementioned parts of this system.

B. Event detection

The signals from the electrodes are treated as multi-unit;
i.e., the aim is to detect energy related to a population of
spikes rather than to identify spikes from particular neurons;
an increase in energy is observed in response to the stimuli,
which is typically sustained in the case of PN [10] and phasic
in the case of IO. The signal is amplified (gain ≈10000×) and

filtered in the frequency band associated with spikes (typically
300-3000 Hz), resulting in traces of magnitude ≈0.1V RMS.
For the multi-channel electrode in the PN, the signals are
summed together according to a weighting calculated offline,
based on the quality of event detection that can be obtained
from each channel separately. Then signals are rectified and
band-pass filtered to yield a measure monotonically related to
the energy over a small window of time (the energy envelope),
and a threshold is applied to yield onsets and offsets of
detected events. The high cut-off frequency of the band-pass
filter is a compromise between the need to detect events
immediately to act on them in real-time, and the need to
aggregate more information over a longer period to make
better detections. The low cut-off frequency is not critical but
removes long-term drifts in the background energy in traces,
as can be observed in acute experiments with anaesthetised
animals. For PN, where detections may last a few hundred ms,
the band is on the order of 0.1-1 Hz (CS detection should at
least occur prior to the minimum ISI that can be learnt, which
might be≈150 ms [11]), whereas for IO, where the phasic
response may be as short as 25 ms, the band is ≈1-10 Hz.
The thresholding of the PN trace is hysteretic, so that given
the typical pattern of response with a large phasic component
followed by a smaller sustained component, the offset time
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can be detected without lowering the threshold, which would
increase false positive detections. Fig. 1b shows an example
of this procedure (which is common for a range of biosignals
[12, 13]).

C. Cerebellar model

The learning model of the system presented here is based on
a biologically constrained model of the cerebellum and its
role in classical conditioning [14, 15, 16]. Fig. 1d presents a
simplified scheme. The time course of the CR depends on the
total effective excitatory drive onto the PU cells that is adjusted
through the interplay of long-term potentiation (LTP) caused
by the CS and long-term depression (LTD) caused by the US
in the presence of the CS. Learning through LTD causes the
CS derived input to a specific PU to diminish. As a result
this PU will start to pause in its response to a CS. Due to
the absence of PU activity the DN is released from inhibition
and a CR is triggered. LTD caused by coincident CS and US
events incrementally reduces the input to the PU and brings
forward in time the moment at which a CR is triggered. Over
many pairings, the timing of the eye-blink will precede that of
the US and will be considered a CR. The correct timing of the
response is stabilised through a negative feedback from DN
to IO which, once activated to deliver a CR, also blocks US
signals from being conveyed to the cerebellum, thus preventing
further LTD. The feedback delay of this loop is tens of ms [17],
which serves to match peripheral delays in the production of
an eye-blink. In the continued absence of paired trials, LTP
caused by the CS alone will ultimately extinguish a previously
learnt timed response.

The real-time features of this model have been previously
assessed using robotic experiments and key features of this
model have already been implemented in an aVLSI form [16].
Further validation has been obtained by interfacing it directly
to the brain [4]. The model is interpreted in this work as
high-level, not concerned with details at the level of spiking
transmission or molecular mechanisms of plasticity, and not
necessarily indicative of the behaviour of individual PU cells
but rather as an aggregate behaviour. Nevertheless the model
contains some elements common to neuromorphic electronic
design, such as decaying time courses (as in the activation
of PU cells during the CS), events triggered by threshold
crossings (as in the CR event caused by the reduction of PU to
DN inhibition below a certain level), the need for the storage of
a value representing (in this case aggregate) synaptic weight
and integration of plasticity events on that value, based on
relative timing of events (as in the application of LTP based
on a CS event and the application of LTD based on the arrival
of a US event during a CS event).

III. CHIP DESIGN

A. Prototype chip

A chip prototype has been designed and fabricated to imple-
ment the cerebellar microcircuit replacement prosthesis de-
scribed in sect. II. The design respects many of the constraints

of implantation, although the current prototype does not offer a
standalone solution. The chip (fig. 2a) contains three cores, (1)
a voltage bias generator; (2) low noise neural amplifiers; (3) a
field-programmable mixed-signal array (FPMA). The FPMA
core is capable of implementing event detection (sect. II-B)
and the cerebellar model (sect. II-C) and is the focus of this
article. Other cores are not used in this work; any voltage
biases necessary are supplied externally, and the amplifier
core (which would include the first stage of filtration in fig.
1b) is by-passed, with pre-amplified and pre-filtered signals
brought to the inputs of the programmable array. Note that a
complete solution would also contain a core for generating
stimulation pulses, whereas this prototype can be used to
trigger an external stimulator.

This section introduces and describes the programmable core.
A typical field-programmable gate array (FPGA) contains an
array of digital logic primitives which are surrounded by
a matrix of programmable interconnect such that primitives
can be wired together by setting digital switches; thus arbit-
rary digital computers can be constructed. Such devices are
commonly used especially in prototyping systems. The field-
programmable analogue array (FPAA) concept is similar ex-
cept with analogue computational primitives. Various authors
have attempted to use diverse primitives in FPAAs, including
transistors [18] current-mode circuits [19], switched capacitors
(SC) [20], and higher level compound blocks [21, 22]. The
many different possible requirements of analogue circuits
suggest a spectrum of different design choices from the
choice of primitives upwards and dictate against the generality
achievable with FPGAs, limiting application of a given FPAA
architecture to a given application domain. It will be argued
in sect. VI-B that, with certain design choices, neural signal
processing and neural modelling is a promising domain for
this technology.

The core that has been created is a field-programmable mixed-
signal array (FPMA), but not in the usual sense of an
FPGA and an FPAA core on the same chip with a layer of
analogue-to-digital and digital-to-analogue converters (ADCs
and DACs) separating their domains [23, p. 71] [24]. Rather
digital and analogue signals are mixed “intimately”, sharing
the same routing resources, and a key novelty is the method of
controlling currents to allow this mixing (sect. III-E). The gen-
eral approach taken is to work with discrete-time voltage-mode
signals by means of SC circuits; this is a common choice for
academic and commercial designs alike [20, 25, 26, 27]. The
SC technique emulates resistances by switching the terminals
of capacitors; this standard technique will not be explained
here.

The primitives (hereafter “components”) are of 4 types: pulse
generator (PGN), configurable switched capacitor (CSC), op-
erational transconductance amplifier (AMP) and configurable
logic block (CLB); schematics are shown in fig. 2b. They
are laid out in an island-style topology [28], with relatively
permissive routing which is not optimised for low path imped-
ance. Configuration of components and routing is by the row-
parallel programming of SRAM cells distributed throughout
the chip. There are 500 components of the various types;



4

this is therefore a fine-grained design, (whereas most com-
mercial designs have offered a small number of components
[27, 26, 29]), and the intention is to operate with many small,
low-quality components, using a combination of calibration
and pooling of components to deliver accuracy where it is
required. For details of the core architecture see fig 2c.

Limitation of power consumption is a major concern for
implantable hardware and a prominent reason for working with
analogue circuitry. In the following 4 sections, key aspects of
this design are described that limit power consumption and
otherwise make it fit for the domain of neural signal processing
and neural modelling. These aspects are: switched capacitor
optimisation (sect. III-B); current control (sect. III-C); leakage
limitation (sect. III-D); and the mixing of analogue and digital
signals (sect. III-E). Then sect. III-F, shows how rectification
is performed, as an example computation which utilises all
components and which is part of the signal processing chain
of sect. II-B.

B. Switched capacitor optimisation

The choice of SC circuitry allows great flexibility but is not
ideal for power consumption, since repetitive charging and
discharging of clock nodes can pass significant current with
respect to the charging and discharging of the voltage-mode
signal nodes that they act on. Nevertheless there is much that
can be done to limit power consumption. Firstly, CSCs are
clocked by a single signal and each contain a state machine
for locally generating a pair of non-overlapping pulses in
response to a rising edge (fig. 2b). This halves the power
used in charging and discharging clock nodes compared to
transmitting the two non-overlapping clocks on separate wires.
Secondly, clocks are not global but rather generated by PGNs
and routed only to where they are needed. The CSCs take their
clock signals from the programmable matrix, also allowing
them to pass single packets of charge in response to irregular
events generated elsewhere within the array; this has possible
uses in neuromorphic modelling, a novelty which sets this
design apart from other SC FPAAs, but which is not exploited
in this article. The aforementioned state machine is insensitive
to the slew rate of the clock, thus reducing the requirement
for the strength of the driver of the clock signal, which needs
to source and sink current only just fast enough to charge and
discharge the clock node once per cycle. (The state machine
is based on the slew-rate insensitive D-type flip-flop of [30]).
This can reduce the effect of clock noise in the system, since
clock nodes typically slew much more slowly than in digital
systems, meaning that driven nodes onto which these signals
are coupled may have much smaller transients as a result.
Thirdly, PGNs can be enabled by routed digital signals, thus
processes that are active with only a short duty cycle (there
are many within the cerebellar model, see sect. IV-D) may
consume much less power than if they were continuously
clocked.

(a) The chip uses a 0.35 µm process (Austria Microsystems), and has
dimensions 4.8×3.8 mm. Cores are indicated on the photo.
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(b) Simplified schematics of the 4 components types. The CLB (sect. III-E)
is as in [30] with an additional high-starved input (“H”). The CSC (sect.
III-B) has 2 switched inputs to each side of its capacitor and can work
in lossless as well lossy modes [31], or as an analogue switch or a static
capacitor; the capacitance is an array programmable by SRAM [as in 20,
fig. 6], in the range ≈50 fF - 1.6 pF. “Polarity” explained in sect. III-F.
For PGN see sect. III-B; For AMP see sect. III-D.
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(c) Components are laid out in an island-style topology [28]. Each routing
bus has 8 wires (only 4 are shown for clarity), wire segments span one
row or column of the component array and the switch blocks connect
each wire terminal to 5 others (relatively permissive [28, sect. 5.1.3]).
Switches (shown as dots) are transmission gates (T-gates; i.e. an NMOS and
a PMOS in parallel) each gated by a dedicated SRAM cell. Configuration
of components and routing is by row-parallel programming of SRAM dis-
tributed throughout the chip; the chip is laced with 337 word lines and 410
bit-line pairs driven by standard programming circuitry in the periphery;
these define a grid of possible SRAM locations of which ≈60,000 are
occupied. Each 8-transistor SRAM/T-gate cell uses ≈ 54µm2. The core
has dimensions 1.6×2.9 mm; this area is dedicated to: routing switches -
58%; components - 34%; and bias generators (sect. III-B) and decoupling
capacitors - 8%. There are 500 components: 40 PGNs, 120 CSCs, 180
AMPs and 160 CLBs.

Figure 2: Chip design overview
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C. Current control

The signals involved in the initial stages of the chain of filters
must pass signals of up to 3 kHz, implying a Nyquist rate of
6 kHz and a clock frequency for CSCs significantly higher
(the core has been designed for frequencies up to ≈ 100
kHz). Later stages in the process have high cut-off frequencies
on the order of just 1 Hz, and the cerebellar model of sect.
II-C needs a slowly ramping signal representing PU activation
(trace 2 of fig. 1d) which decreases over a period of order
1 s, for which clocked processes of order 10-100 Hz may be
sufficient. There is therefore a range of greater than 3 orders of
magnitude of different frequencies of operation and it should
be possible to set the currents associated with these various
processes appropriately so as not to waste power. The core
is divided into 10 bands of components, each of which has
associated bias currents which can be set to bias the AMPs,
the CSCs’ state machines, and the CLBs (sect. III-E). It is
intended that different circuitry operating at different speeds be
placed within these bands, so that only those components with
a high speed requirement are run at high power. The 24-bit
programmable current generators of [32] have been reworked
for SRAM programming. The currents are used both to bias
components and to drive oscillators in the PGNs. The current
of each generator can be individually altered over several
orders of magnitude from a master current of 2 µA down
to < 1 pA, producing oscillator frequencies from ≈ 100 kHz
down to << 1 Hz. Taking the aforementioned slowly ramping
PU-activation signal as an example, this was constructed as
a SC integration [31], with a PGN driving a CSC, an AMP
for active operation and a CLB (sect. III-E) controlling the
activation of the ramping. The PGN was biased at 330 pA,
giving a frequency of ≈100 Hz, which (for chosen capacitor
ratios) set the speed of the ramping. (Other less critical biases
were set in a similar range: 3 nA for the AMP and 250 pA
for the CLB and CSC).

D. Leakage limitation

Since some signals, e.g. the level of PU activation, are intended
to vary with a time constant of order 1 s or below, the leakage
of charge through switches to such nodes becomes a cause for
concern. Leakage is reduced in a mode suggested by [33]. The
chip has two pairs of power rails, an inner and an outer pair.
The outer pair, vdd and gnd, are separated by a standard 3.3
V, whereas the inner pair are offset by programmable voltages
from the outer pair, e.g. to 3.1 V and 0.2 V respectively.
All inputs to the programmable interconnect are powered
by the inner power rails and are thus constrained to remain
between them, whereas the SRAM cells which control the
T-gate switches are powered by the outer rails. This means
that if a node required to carry a stable voltage is separated
from other nodes carrying unknown voltages by a switched
off T-gate, Vgs is guaranteed to be a maximum of -0.2 V (for
the NMOS), thus limiting the currents through the transistors
to the fA range. A suitable choice of the offset voltage at
each power rail can reduce the currents through the transistors
until they are comparable to the reverse diode leakage current,

Gnd(0V)

InnerGnd(0.2V)

Vdd(3.3V)

InnerVdd(3.1V)

Bias

InPlus

InMinus Out

P1 P2

P3 P4

P5 P6

N1 N2

N3 N4

N5 N6

P7 P8 P9 P10

N7 N8 N9 N10

Figure 3: Amplifier topology. The input stage (P/N1-6) is cascoded (P/N3-
4) to reduce offset, with the bias (N1-2) mirrored with pMOSFETs (P1-2) for
rail-to-rail operation. The input stage operates between the outer power rails
for maximal input range whereas the intermediate mirrors (P/N7-8) and output
stage (P/N9-10) operate between the inner power rails as is the limitation for
all signals which pass through the interconnect network.

which ultimately limits the stability of a node. The use of inner
and outer power rails to reduce leakage has been demonstrated
in a different context in [34, sect. 3B]. Measurements on this
chip show that a typical net consisting of 30 routing wire
segments and only parasitic capacitance can achieve a leak
as low as 35 mV/s, a 200-fold reduction compared to when
no offset is used. Thus this technique can reduce leakage by
orders of magnitude and allow voltages stored on capacitors
to remain almost stable over time scales relevant for neural
modelling. For this, a proportion of the voltage range available
for analogue computation has been sacrificed. The transistor-
level design of the AMP component is given in fig. 3 as an
example of how the dual power rails are utilised. It is a single-
ended output amplifier based on a standard rail-to-rail topology
but is altered so that its output stage is limited to the inner
power rails whereas its input stage operates between the outer
power rails, optimising linearity over the input range.

E. Intimate mixing of analogue and digital signals with asym-
metric logic

Digital logic is used to supplement analogue computations
where required. For example, in the model described in sect.
II-C, the direction of synaptic plasticity depends on the timed
convergence of direct and modulatory inputs on synapses
from CS and US signals respectively; such a decision can
be implemented with a logical AND gate. Digital circuitry
also allows the building of stable binary-valued memories of
arbitrary precision, e.g. to store the weight value in the model.
The CLB component allows these possibilities. In search of a
simple flexible design, the CLBs have been placed in the same
matrix of programmable interconnect as the other components
(fig. 2c), such that any component can act as an input to any
other, e.g. an AMP implementing a threshold can act as an
input to a CLB.

A standard approach to power reduction in digital logic is
to increase the slew rate of signals so as to reduce “crowbar
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current”. This is the current which flows through a logic gate,
e.g. an inverter, when its input is not saturated at one of
the power rails. In a system where analogue signals may be
used as digital inputs, slew rates may be arbitrarily slow, and
thus a different solution is required. The CLB design (fig. 2b)
has been described in [30]. To summarise, this uses starved
logic gates to limit crowbar current. As AMPs and the state
machines of CSCs can be biased to define their speed of
operation, the maximum currents that flow through the digital
gates of the CLBs are likewise programmable, also defining
their intended speed of operation. The logic gates are starved
asymmetrically, and this asymmetry allows useful circuits such
as a D-type flip-flop which is insensitive to the slew rate of
its clock, and a CLB configuration which checks the digital
saturation of an input, as used in this experiment, see sect.
III-F.

Outputs of the CLBs are all current-starved in one direction,
such that digital signals are allowed in the programmable
matrix which transition upwards quickly but downwards more
slowly (according to how they are biased). More generally,
signals in the matrix are driven by currents which can vary
over many orders of magnitude or which are driven only by
switched capacitors and therefore undriven between pulses.
This introduces several possibilities for signals with large
and/or fast swings to couple capacitively to other signals which
may be sensitive to noise. Capacitive coupling mainly occurs
in the routing matrix and is especially problematic when two
signals run alongside each other on parallel wires for long
distances. Sect. IV-B gives an example in which a filter design
was selected specifically to avoid such a problem. It is also
possible for sensitive signals to be protected by the routing
algorithm, for example by being flanked by grounded wires,
though with an additional resource cost.

F. Full-wave rectification

Rectification, as required in the chain of signal processing
leading to event detection, is given as an example of how the
components described above can be used together to perform
computation. Fig. 4a shows a rectifier circuit, which uses the
same principle as [35]. It is based on the active low pass
filter circuit shown in fig. 4a (inset), which is mapped into
the components previously described. CSC1-2 act as R1-2 re-
spectively and CSC3 acts as C1 (for clarity, the diagram shows
only the ports of components which are used). InputOffset
is a voltage bias at the level around which the input signal
In is centred. PGN provides the regular pulse stream which
drives CSC1-2. Using the same clock for both components
simplifies the setting of the gain and cut-off frequency of
the filter to a matter of adjusting the ratios of capacitance in
CSC1-3. Each CSC shown here may be composed of more
than one physical component wired in parallel in order to
achieve the desired capacitance. AMP1 determines whether In
is above InputOffset. AMP2 applies further positive feedback
to sharpen the previous decision. CSC1-2 act in lossless mode
[31], with their ground set to a voltage bias OutputOffset.
This bias is set in a calibration phase to a level which

compensates for any systematic offsets due to mismatch, to
deliver an output centred around the desired voltage (as will
be described in sect. IV-D). CSC2 acts as a transresistance,
whereas the output of AMP2 is used as the “polarity” of CSC1
(a specialisation of the CSC component, which is controlled by
the input labelled “P”, such that φx/y are φ1/2 or vice versa),
so that CSC1 either acts directly as a transresistance when
In is below InputOffset, giving negative or inverting gain, or
otherwise acts as a negative transresistance, giving positive
gain, effectively rectifying the input. The CLB is programmed
with the XNOR function to act as a logic level detector [as in
30] on the polarity, disabling the pulse generator when In is
close to InputOffset to prevent an intermediate polarity input
to CSC1 causing an improper switch sequence. An example
output from the chip is shown in fig. 4b (the PGN operated at
≈50 kHz and the filter was programmed and calibrated for a
gain of ≈ 2.2×); additional phase shift can be seen, as well as
clipping at the bottom towards the threshold due to the clock
disablement; however, performance is more than adequate for
its subsequent use in energy detection.

IV. METHODS

A. Electrophysiology

The data was selected from a batch of 6 electrophysiology
sessions. In each session an anaesthetised rat had a 3-twisted
platinum wire (California fine wire) electrode inserted into the
PN to detect the CS and a 5 MΩ tungsten needle electrode
(A-M Systems, USA) or a stainless steel entomological pin
#000, insulated except for ~0.15 mm tip, into the IO to
detect the US. These electrodes were connected to a standard
amplification system (MCP-plus, Alpha-Omega, Israel) which
applied 10000× gain and Butterworth filters: 2-pole high-pass
at 300 Hz; 4-pole low-pass at 3000 Hz. The 4 signals were then
digitised at 14286 Hz per channel with a standard sampling
system (Power1401, CED, UK). The CS was a white-noise
stimulus of 67-70 dB for 470 ms delivered through a hollow
ear-bar of a stereotaxic head holder to the right ear. The US
was an air-puff of 1.5 bars at source for 100 ms delivered
through a nozzle about 2 cm from the right eye. The ISI was
370 ms, such that CS and US co-terminated. 60 paired CS-US
trials were delivered, with an inter-trial interval (not including
CS duration) of 8 s. The rat was sacrificed and electrode
locations were confirmed with histology. All procedures were
approved by the Tel Aviv University Animal Care and Use
Committee (P-05-004).

B. Simulation of event detection and parameter setting for
model

The signal processing was conceived as a chain of first-order
filters, where the first in the chain was rectifying as in sect.
III-F, with cut-offs for IO at 3000 Hz LP (rectifying); 30 Hz
LP; 6.4 Hz LP; 1 Hz HP. The 30 Hz step was added in order
to avoid extreme capacitor ratios in the step down to 6.4 Hz.
For PN, the final three cut-off frequencies were instead: 10 Hz
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Figure 4: Rectification: (a) inset top-left: First order active low-pass filter
design. (a) rectifier circuit using all 4 component types - see main text for
explanation; CLB ports are “H” (high-starved input) and “L” (low-starved);
CSC port “P” controls switching polarity. (b) performance example: The chip
was routed to implement the design in (a). It was then calibrated for gain and
output offset (see sect. IV-D). Input data (dotted line) was white noise shaped
by filters which match the filters offered by the MCP amplifier (see sect.
IV-A) with 250 mV RMS magnitude. This was reconstructed by a DAC at
25 kHz and streamed in to the chip. A short section of the output of the filter
is shown (full line) against a simulation of the output of an ideal full-wave
rectifier and 3000 Hz first order low pass filter.

LP; 1.6 Hz LP and 0.2 Hz HP. It has been noted in sect. II-B
that the precise filter frequencies are not critical but are based
on heuristics. For PN, an additional 3000 Hz LP filter was
included at the beginning of the chain which had one input for
each channel and performed weighted summation. Gain was
introduced at each filter stage. In the first one or two stages
for IO and PN respectively, sufficient gain was introduced to
bring the signal to 500 mV RMS. Then gain was 4 and 3 for
the two low-pass stages (these values were selected to keep the
signal utilising the available voltage range). An active high-
pass filter has only parasitic capacitance on its virtual ground
and this node can therefore suffer from capacitively coupled
clock noise in the programmable interconnect. Thus a passive
high-pass filter was used for the final stage (the gain was
therefore unity). These signal processing chains were applied
in software to each digitised trace separately using IIR filters.
Following the final stage, a threshold was applied, where an

iterative search yielded the threshold which to the nearest 1
mV maximised bespoke quality measures. In the case of IO,
the quality measure was based on the background frequency of
US detections being as close as possible to 1 Hz (a level which
empirically works well over diverse recordings). In the case of
PN, the quality measure rewarded CS detections which started
in a time window up to 100 ms after the CS onset and lasted
for the correct duration, and punished deviations from this
ideal. (Details of the quality measures and further insights on
these methods will be published separately). For the PN, which
has multiple recording points, the quality measure was used to
provide weights for the summation of the channels in the first
filter stage, such that channels which individually provided
better information about the stimulus contributed more.

The model was parametrised with: a threshold for the pro-
duction of a CR when PU activation reached a proportion
of 0.2 of its full baseline value (an arbitrary choice); a rate
of (linear) reduction of PU activation such that it passed
from maximum to minimum in 1 second; a delay from the
CR onset to inhibition of IO of 80 ms (higher than the
20-30 ms observable in biology [17] in order to accentuate
the observable effect in this experiment); and LTP and LTD
rates which were set so that an acquisition of a well-timed
response would ideally be achieved after 60 paired CS-US
trials (a physiologically realistic number of trials would be
≈ 500 for rat but corresponding to rabbit and much fewer in
humans) and extinguished after the same number (fluctuations
in detection performance would cause deviations from these
ideals however).

The model was simulated based on the detections from the
previous stage, to confirm that acquisition and extinction of
the learning of a well-timed learnt response was possible in
principle based on applying these methods to the available
data. To do so, the traces recorded in the 60-trial experiment
were repeated twice, allowing there to be a phase of acquisition
in which the weight value should decrease, followed by
a phase of stability in which the weight value should be
maintained in the same region by the negative feedback (in a
control systems sense) effected by the (feedforward) inhibition
from DN to IO. Thereafter the traces were repeated twice more
but with the IO recording shifted forward in time by ITI/2,
such that the increase in US-related events did not occur during
the CS thus simulating unpaired trials; this allowed another
120 trials in which conditions for extinction were simulated
and the weight value should increase to its maximum value
and stay close to it thereafter.

Of recordings from the 6 electrophysiology sessions, some
had S/N ratios from one or both of the nuclei too low for the
described learning to recognisably occur (this will be quanti-
fied in a separate publication); the best simultaneous recording
from both nuclei was selected for the experiment reported here.
Having established that the learning was possible in principle,
the same inputs were sent to the chip, yielding the results in
sect. V.
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C. Chip test environment

The chip was placed on a bespoke PCB providing connections
to DACs and ADCs and an integration board (XEM3010,
Opal Kelly, USA) hosting an FPGA (Xilinx Spartan 3). The
FPGA was used to programme the chip, manage the ADCs
and DACs and stream data between the chip and a PC. The
chip was designed to be packaged with a minimal pin-out
of 56 pins in an 8×8 mm QFP package for implantation;
however for testing it has a full pin-out of 144 pins. Of these,
58 are general purpose I/O ports to the FPMA core. Bespoke
software for programming of the chip (placing, routing and
calibrating) and monitoring of its operation was developed
using Matlab (Mathworks, USA). Programming SRAM, for
example, involves generation of data words encoding the
switch matrix settings generated by a routing algorithm. These
words are transmitted via USB to the FPGA, which then
effects a serial programming protocol. Programming each of
the 337 rows took 2 ms.

D. Chip programming: Place, Route and Calibrate

Various types of sub-circuit were defined, e.g. an active low-
pass filter type, with rectifying as a sub-type, as demonstrated
in sect. III-F. The event detection chain and cerebellar model
were decomposed into sub-circuits and described using a be-
spoke description in Matlab code. Other sub-circuits included a
delay (for example for timing the delay between CR onset and
IO inhibition), a linear ramp (for example for describing the
behaviour of PU activation following a CS onset), a hysteretic
threshold, etc. The delay and linear ramp are two examples of
circuits which are event triggered and activate a PGN to drive
their process only when required, so as not to waste power
on unused clock cycles. Placement of components to form
the necessary sub-circuits was performed deterministically
based on heuristics from the user; in constructing filters,
for example, trade-offs between clock rates and capacitance
ratios were calculated from coded heuristics, as well as their
relative placement to minimise necessary routing. Routing was
then performed using a bespoke algorithm and the chip was
programmed. The design used in this experiment employed
43% of CLBs, 89% of CSCs, 21% of AMPs, 38% of PGNs,
and 39% of routing wires.

Each stage of processing introduces deviations from ideal
performance due to mismatch, for example in amplifier offsets.
To compensate for this, calibration routines were devised for
each sub-circuit. For example, for active first-order filters, cal-
ibration consisted of streaming in a short section of recorded
data, recording the filter output, comparing the output to that
of the same filter in software and adjusting capacitor ratios
and voltage biases to adjust gain and offset respectively. When
initially laid out, an excess of programmable capacitance was
made available beyond what was needed in the ideal case,
to allow the capacitance ratios to be altered to allow for the
effects of mismatch and parasitic capacitance from routing
wires and switches. The calibration process was iterated until
the residual error fell below thresholds chosen by the user,

in this case <50 mV offset and <5% difference in gain. A
calibration routine could also be devised for cut-off frequency
but this has not been implemented. Pulse generator frequency,
the basis of filter cut-off frequency and other behaviours, was
however calibrated on a component-by-component basis.

To avoid accumulation of offset differences from one stage
to the next, input was always to the first filter in the chain
and comparison was always with the accumulated effect of
all the software filters up to that point in the chain. In
case a desired gain could not be programmed because the
required capacitance were greater than that allowed for in
the placement of CSC components, then the extra gain would
automatically be introduced by the calibration in the following
stage, correcting the overall behaviour of the signal processing
chain (the gain of the final HPF is, however, uncorrectably
less than unity due to parasitic capacitance on the output node
forming a capacitive divider to ground, but this simply results
in altered thresholds for detection).

Having calibrated performance of individual parts of the
system, the overall performance was optimised by streaming
in the entire sequence of recorded data and optimising: (a)
the thresholds for event detection, using iterative search in
software as described in sect. IV-B but based on traces
recorded from the chip; and (b) the frequencies for plasticity
processes, so as to match as well as possible the desired rates
of acquisition and extinction of the learnt response.

As mentioned in sect. III-E, the model requires a stable ana-
logue value representing a combined synaptic weight. Given
that LTP and LTD need to be finely balanced against each
other and that single plasticity events must have sufficiently
small effect that learning acts only over many trials, ≈12 bits
of analogue depth is required, an accuracy which is difficult
to achieve with multi-valued stabilisation mechanisms [36];
however for the timing of eye-blink responses accurate to
≈10 ms, ≈7 bits of accuracy is required, which is more
easily achievable. The design therefore used a 12-bit digital
incrementer and decrementer (Inc-Dec) circuit, and the 7 most
significant bits were converted to an analogue voltage by a
DAC circuit. The Inc-Dec circuit was constructed from CLBs
and was clocked by the outputs of two PGNs, which were en-
abled only during plasticity events. A binary-weighted design
was used for the DAC, with CSCs emulating resistances. The
CSCs were all clocked at the same low rate (since weight
changes only slowly) and a calibration phase fine-tuned the
capacitance values to maximise the linearity of the conversion
given mismatch. This is a case where accuracy can be traded
off against resources; the more CSCs used, the better the
linearity that can be achieved, see the discussion on accuracy
in sect. VI-B1.

V. RESULTS

A. Real-time learning

As described above in sect. IV-B, data from 240 trials (4
repetitions of 60 trials with the first 120 having paired CS-US
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Figure 5: Results. Behaviour of chip signals during 4 example trials. Each
graph shows the traces of 7 signals buffered out from the programmable core.
Within each signal, the vertical scale shows the voltage range from 0 up to
3.3V. The number of the trial is given in the heading and time on the x-axis is
relative to the CS onset, with three vertical lines marking, from left to right:
CS onset, US onset and the offset of both stimuli.

events and the rest effectively having CS alone) was streamed
to the chip, once it had been programmed to perform event
detection and the cerebellar model, and had been calibrated
accordingly. Fig. 5 shows the results of selected trials from
the experiment. Note the diversity of the signals involved: CS-
detected, US-detected, LTP-clk-enable and LTD-clk-enable are
all low-starved digital outputs from CLBs, with biases ranging
from 20-500 nA; CR is the output of an AMP thresholding
PU-activation biased at 30 nA (smooth upwards slews can
be seen); and PU-activation and Weight are analogue traces,
with Weight being the output of a DAC sub-circuit buffered by
an AMP, and PU-activation being the output of a linear ramp
sub-circuit (driven by a CSC). In an early trial, (a), CS and US
were both detected, leading to a period of LTP which lasted
for the duration of the detected CS, and LTD was applied for a
fixed period after the detection of the US. The net effect on the
weight was negative, though almost imperceptible in the graph.
Note that a detection of IO activity prior to the CS did not
cause LTD. During the detected CS, PU-activation gradually
declined from its baseline level, although not enough to cause
a CR. In (b), after Weight, and thus the baseline for PU-
activation, had decreased somewhat, PU-activation crossed its
threshold causing an output in CR around time 0.45, too late to
anticipate the aversive stimulus. In (c), with the weight slightly
lower, the CR event occurred prior to the air-puff, and in (d)
the CR happened early enough that the US detection did not
lead to LTD, because its action was blocked by the modelled
effect of DN to IO inhibition.

Fig. 6 shows overall results for the experiment. Fig. 6(a)
shows trial-by-trial detection performance for the two nuclei
superimposed, as well as the CR events produced. Most CS

events were detected shortly after their onset, and in addition
there was a low rate of false alarms. Those correctly detected
stayed active for an average of 0.46 s. US onsets were detected
during the air-puff with a frequency ≈3 times the background
rate. The noise inherent to the system is evidenced by the
fact that the pattern of detections of CS and US events was
similar but not identical from one block of 60 trials to the next,
although the inputs were identical. Nevertheless the modelled
neural system achieved the acquisition and extinction of a
well-timed response to the CS; fig. 6(b) zooms graph (a) in
the region of the acquisition of a well-timed response; the
first well-timed CR (excluding one produced due to a false
detection at trial 59) occurred at trial 69, and from then until
trial 120, 88% of CS events caused a well-timed response.
Thereafter the last well-timed CR occurred at trial 125 and
from trial 132 onwards there were no more responses, i.e.
extinction of the CR. Fig. 6(c) summarises the acquisition
and extinction of well-timed responses. Fig. 6(d) shows the
evolution of the weight during the experiment. There was a
period until trial ≈70 in which it descended, after which it
remained buffeted around the same level. Then from trial ≈120
onwards the weight ascended until it reached its maximum
level, to which it thereafter stayed close. For comparison
with fig. 6(d), (e) shows the evolution of the weight variable
during the software simulation of the experiment. Although
differences are visible, the broad behaviour is the same.

B. Adapted model

A demonstration of the utility of the programmable system is
provided by an alternative experiment. Electrical stimulation
of the FN to elicit an eye-blink can introduce large artefacts
into the recordings from PN and IO which, unless cancellation
techniques were applied, would result in detections of CS
and US events for the duration of stimulation, corrupting
the action of the model. To avoid this without developing
artefact cancellation, an alternative form of the model was
implemented on the chip, as in [4], in which there was no
delayed inhibition of LTD based on the production of a CR, but
rather, both forms of plasticity, LTP and LTD, were inhibited
for the duration of a CR (this departs from the biomimetic
roots of the model for the sake of practicality). In this case,
when CRs are well-timed, US events will be blocked by
this mechanism and the weight should stabilise in any case.
Results are not graphed due to space, but the weight variable
followed a similar trajectory, with the first genuine well-timed
CR at trial 69, but with the difference that without the delay
to regulate the timing of the response there were more late
responses, with only 52% well-timed CRs between trials 69
and 120.

C. Power consumption

Power consumption is presented as measurements of cur-
rent (at room temperature; with Keithley 6487 picoammeter,
Keithley Instruments Inc., USA) into outer vdd (thus drop-
ping 3.3 V through the outer power rails) or into inner vdd
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Figure 6: Results. (a): stimulus detections and produced CRs by trial,
aligned to CS onsets. Vertical lines mark the CS onsets at 0 s, US onsets
at 0.37 s and the joint offsets at 0.47 s (after trial 120 though, the US was
artificially displaced outside the CS period); grey lines are CS detections
(the output of the hysteretic threshold as indicated in fig. 1b); filled circles
are detected US onsets; diamonds are produced CRs. (b): as (a) but zoomed
around trials 60-75. (c): proportion of trials evoking well-timed responses, by
block of ten trials. (d): weight sampled 1s after the CS onset of each trial. (e):
weight sampled 1s after the CS onset of each trial for the software simulation
of the experiment.

(dropping 2.9 V through the inner power rails). With the chip
powered but all components disabled, 0.9 nA passed through
inner vdd; this has ≈8000 entry points to the matrix and the
components through back-biased transistors, implying ≈110
fA per transistor and demonstrating very low leakage. Outer
vdd current through the FPMA should be comparably low
but interference from other cores on the prototype precludes
accurate measurement. The bias generators of sect. III-B leak
2 µA internally, in order to generate currents which may be
orders of magnitude lower, and since the core uses 60 of these
elements which cannot be enabled separately in this prototype,
the quiescent current would be no less than 120 µA. In fact,
due to further biases in other cores and to additional buffering,
the current through outer vdd when they were switched on
was 420 µA. Thus biasing overheads are unnecessarily high.
During the main experiment (sect. V-A), current increased
by 94 µA (outer and inner vdd contributed similar currents
to this total and are hereafter combined for simplicity). This
was dominated by 26 amplifiers in constructed filters and the
DAC circuit, which were biased at full strength. 6.4 µA of
this was due to switched capacitor operation i.e. to the state

machines within CSCs which create non-overlapping clocks,
the PGNs (of which 16 were used), and the routing capacitance
leading from these to the CSCs; therefore, switched capacitor
machinery had a significant but not dominant power cost. Most
of the current consumption was due to the fastest processes,
i.e. the rectifying filters and the initial summation of inputs
from PN electrodes, which operated at ≈50 kHz. A separate
experiment was performed in which only the PU activation
part of the model was implemented (i.e. 3rd trace in fig. 5).
The bias currents used are stated in sect. III-C; this caused
<20 nA total additional current during operation.

VI. DISCUSSION

A. Progress and limitations

The work presented here represents a key step in the pro-
gress towards an autonomous implantable device which could
rehabilitate the function of a circuit internal to the brain. It
demonstrates that a device designed specifically for neural
rehabilitation has operated in real-time on recorded neuro-
physiological data to perform the computations necessary for
biomimetic replication of the functionality of an internal brain
circuit. In this section limitations of the system, both existing
and projected, are duly noted.

The target prosthetic system requires a phase of supervised
learning in order to optimise performance, e.g. the threshold
searches described in sect. IV-B, for which, when applied to
the chip, some external programming is required. It is unclear
to what extent recalibration would be necessary in a chronic
system but it is likely that some degree of reprogramming
during operation would be necessary.

The core has not yet operated in a closed loop with a brain,
although a software based-system performing similar functions
has done so [4]. The data worked with is from anaesthetised
animals; operation on data from behaving animals and from
chronically implanted electrodes has not yet been demon-
strated. The anaesthetised preparation allows a demonstration
of rehabilitation without introducing a lesion or acting on aged
animals, (where impaired performance might be expected [37])
because under anaesthesia no natural eye-blinks are evident
and the rat cannot learn an eye-blink response. The anaes-
thesia introduces differences from normal neural functioning
although previous findings suggest that these differences are
minor. It is likely that the microcircuit model approach used
here could be applied to other cerebellar learning functions
(e.g. vestibulo-occular reflex conditioning) with little effort;
however it is not clear to what extent this approach could be
parallelised to provide more generalised intervention in the
case of a damaged or degraded neural system.

Stimulator circuitry has not been included on the chip pro-
totype. Problems inherent to electrical stimulation include
stimulus artefacts in recordings (see sect. V-B), a large current
requirement (order 100 µA) for which high voltages are ne-
cessary, and chronic problems in the electrode-tissue interface.
For these reasons, it is the opinion of these authors that efforts
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may be better spent in investigating promising alternatives
such as optogenetic stimulation.

B. Application of FPMA to neural signal processing and
neural modelling

The field-programmable approach has been useful even within
this project, as it allowed chip prototyping to proceed whilst
alternative forms of event detection and neural circuit mod-
elling were being investigated without having to first decide
on an optimal strategy. This is evidenced for example by the
change of cerebellar model in sect. V-B, a trivial change for
the programmable core which may have been impossible with
a hardwired ASIC implementation [16].

As noted in sect. III the wide range of requirements of
analogue circuitry dictate against FPAAs achieving the kind
of generality possible with FPGAs in the digital domain, and
limit application of a given FPAA architecture to a given ap-
plication domain. Here, the domain of neural signal processing
and neural modelling is proposed as a promising candidate.
There have been several discussions regarding design choices
in FPAAs, [e.g. 38]. In this section, the design choices that
have been made and explained above, particularly the fine-
grained topology and discrete-time SC design, are assumed,
and issues of noise, speed, power and parallelisation are
discussed in reference to neural signal processing and neural
modelling.

1) Noise and accuracy: In analogue design there are various
sources of inaccuracies including mismatch, noise, large-
signal non-linearities and thermal effects. If more area can be
dedicated to devices, then in general, inaccuracies due to both
mismatch and noise can be reduced due to averaging. Where
precision is required it is common to build in the ability to cal-
ibrate circuits in some way prior to use, so that the unwanted
effects of mismatch can be removed. Calibration procedures
for filter sub-circuits were described in sect. IV-D, based on
the programmability of capacitance within CSCs. FPAAs offer
a more powerful promise for calibration, which has not been
demonstrated here. FPAA structure naturally allows access
to all components for characterisation of their properties;
components could therefore be selected in the placement
phase based on their individual properties [an example of
this approach from a slightly different domain is 39]. The
more fine-grained the design is, the greater flexibility would
be available; utilising this approach would be a non-trivial
undertaking however, since it would increase the complexity
of placing and routing requirements.

Regarding noise, FPAAs trade area of devices against flexib-
ility of design, by using area for configuration circuitry and
for resources which may not be used in a given application.
Additionally, connecting analogue circuits with switches for
flexibility can add noise compared to a monolithic design.
Making components larger to give them better noise perform-
ance reduces the number of components that can be placed in a
given area, and thus reduces flexibility and ultimate complexity
of circuits. Thus in general, domains requiring high accuracy

are a poor fit to the FPAA concept. In neural signal processing,
the quality of signals from electrodes is limited by noise from
electrode impedance and early amplification stages; depending
on the application, the inherent signal-to-noise ratio of the
neural signal may also be a limiting factor. Thus as long as
a signal processing system introduces noise at lower levels
than those existing in the amplified input, its contribution
should be irrelevant. The approach taken here was to use a
fine-grained design with many relatively small, low quality
components, and the approach proved to be sufficient for the
required processing.

Regarding non-linearities, for certain operations such as en-
ergy detection and thresholding, linearity of operations need
not be precise and monotonicity is a sufficient constraint. Thus
the processing of neural signals, once amplified, may have a
lower fidelity requirement than in other domains, e.g. audio
processing.

Regarding thermal effects, the ultimate application of low-
power implanted devices may offer the possibility of disregard-
ing performance change with temperature since temperature is
well-regulated inside the body.

2) Speed: To achieve programmability, components which
would be directly connected by a wire in a monolithic design
are instead connected through a matrix of switches. Each of
the switches adds resistance and capacitance to the signal path.
Adding impedance to signal paths is made irrelevant by the SC
approach, providing only that settling times are long enough
during phases in which switches are closed. Given that neural
signal processing is concerned with frequencies <10 kHz, even
allowing SC circuits to run 10× faster for anti-aliasing, the
requirement for the clock rates is <100 kHz, which is not a
difficult constraint. This relaxes requirements on the design
of switchable interconnect with respect to other application
domains, i.e. switches can be small and numerous.

3) Power: Implantable devices have tight power budgets.
Excessive heat dissipation can cause tissue damage and beyond
this, the lower the power consumption, the smaller can the
implanted batteries be and the longer the times between
recharging. Notwithstanding recent improvements in the per-
formance of low-power digital processors (e.g. the ARM
Cortex) one of the promises of analogue computations is to
reduce the power consumption, compared to an equivalent
digital implementation of the same computation. The increased
capacitance on signals due to programmable interconnect
increases the power consumption, and therefore an ultimate
design for a low power device would likely be a monolithic
circuit. The use of SC circuitry itself is not an ideal choice
for power consumption due to the necessity of charging and
discharging clock nodes from rail to rail. Certain approaches
used here help to limit these losses: non-overlapping clocks
produced locally requiring the delivery of only one pulse
stream; pulse generators disabled when not required; and
pulse streams routed only where required. The results of sect.
V-C show that the contribution of SC circuitry to power
consumption was not dominant. Nevertheless the prototype
presented here is just at the beginning of what could be
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achieved regarding power limitation. A priority in a future
prototype will be the reduction of the large overhead of the
bias generator unit, perhaps by moving to individual biases
for each component created by floating-gate transistors. Such
a move would also ease placement constraints caused by the
banding of components, and would avoid power losses from
the inability to individually optimise the current usage of
components in the same band. Another design revision may be
the elimination of PGN components and the use of the other
components to construct oscillators where required. This could
reduce routing and hence capacitance for clock signals as well
as simplifying the overall design.

4) Parallelisation of hardware: As noted above, it is un-
clear to what extent the prosthetic intervention presented
here could be parallelised, for example allowing the pairing
of more neutral and aversive stimuli in order to provide
more generalised cerebellar functionality. In general however,
neural processing gets its power from its massive parallel-
ism. To achieve parallel processing, in a digital system it
is typical, though not essential, to time-multiplex a single
or small number of processing cores, whereas in analogue
design it is typical to parallelise hardware for computations
which must operate simultaneously. Typical digital processing
therefore approaches speed constraints whereas typical ana-
logue processing approaches area constraints. A fine-grained
design which offers many small, low quality components is
a better match to the demands of neural modelling since
more resources allow the construction of more circuits in
parallel. Parallelism has not been demonstrated here, with only
two parallel signal processing chains and the summation of
three input channels implemented. In the present prototype,
notwithstanding its fine-grained design, area constraints are
severe, with 500 components of various types being sufficient
but not over-abundant for the task at hand. Nevertheless since
the ultimate limits of VLSI scaling are not known, it is
too early to conclude that a field-programmable approach
would not provide dense enough circuitry for continued use in
implantable devices. The majority of the area of the prototype
core is occupied by minimum-sized devices and it is hoped to
investigate the scaling potential of such a design.

In conclusion, it is argued here that fine-grained FPAA designs
applied to neural signal processing and neural modelling may
not suffer from some of the drawbacks which limit their
applicability to other domains. Meanwhile this approach may
offer benefits of rapid prototyping and quicker time to market
especially for low-power implantable prosthetic applications.

VII. CONCLUSION

An FPMA specialised for neural signal processing and neural
modelling has been designed and fabricated as a core on a
chip prototype intended for use in an implantable closed-loop
prosthetic system aimed at rehabilitation of a function internal
to the brain. Novelties in the design of the FPMA include:
the intimate mixing of SC analogue techniques with current-
starved digital computation and power saving innovations
within this framework; and the adaptation of components for

use within a switch-leakage-resistant framework employing
inner- and outer- power rails. The utility of the system has been
demonstrated by the implementation of classical conditioning
of an eye-blink reflex, resulting in the acquisition of well-timed
responses to paired conditioned and unconditioned stimuli,
which have been detected in real-time from multi-channel
data recorded simultaneously from two sub-cerebellar nuclei,
and the extinction of those responses given unpaired trials
constructed from the same data.
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