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Abstract

Emulating the input-output functions performed by a brain structure
opens the possibility for developing neuro-prosthetic systems that replace
damaged neuronal circuits. Here, we demonstrate the feasibility of this
approach by replacing the cerebellar circuit responsible for the acquisition
and extinction of motor memories. Specifically, we show that a rat can
undergo acquisition, retention and extinction of the eye-blink reflex even
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though the biological circuit responsible for this task has been chemically
inactivated via anesthesia. This is achieved by first developing a compu-
tational model of the cerebellar microcircuit involved in the acquisition of
conditioned reflexes and training it with synthetic data generated based
on physiological recordings. Secondly, the cerebellar model is interfaced
with the brain of an anesthetized rat, connecting the model’s inputs and
outputs to afferent and efferent cerebellar structures. As a result, we show
that the anesthetized rat, equipped with our neuro-prosthetic system, can
be classically conditioned to the acquisition of an eye-blink response. How-
ever, non-stationarities in the recorded biological signals limit the perfor-
mance of the cerebellar model. Thus, we introduce an updated cerebellar
model and validate it with physiological recordings showing that learning
becomes stable and reliable. The resulting system represents an impor-
tant step towards replacing lost functions of the central nervous system
via neuro-prosthetics, obtained by integrating a synthetic circuit with the
afferent and efferent pathways of a damaged brain region. These results
also embody an early example of science-based medicine, where on the
one hand the neuro-prosthetic system directly validates a theory of cere-
bellar learning that informed the design of the system, and on the other
one it takes a step towards the development of neuro-prostheses that could
recover lost learning functions in animals and, in the longer term, humans.

Introduction

Neural prostheses between the central nervous system and peripheral systems
have a relatively recent development history. Some examples are retinal and
cochlear implants (Cohen, 2007; Zrenner, 2002; Wilson et al., 1991; Eddington
et al., 1978), and brain computer interface systems controlling artificial limbs
(Hochberg et al., 2012; Moritz et al., 2008; Schwartz et al., 2006; Chapin et al.,
1999). However, the bi-directional coupling of a prosthetic system with the
central nervous system has only very recently been addressed (Berger et al.,
2011; Bamford et al., 2012). Here we demonstrate the functional bi-directional
coupling of an artificial system and the central nervous system in the context of
classical conditioning. Classical conditioning is one of the most essentials forms
of associative learning (Pavlov and Anrep, 1927). In classical conditioning, an
initially neutral Conditioned Stimulus (CS - see Table 4 for the list of abbrevia-
tions) precedes an aversive or appetitive Unconditioned Stimulus (US), leading
to the acquisition of a Conditioned Response (CR). A widely employed paradigm
in classical conditioning is eye-blink reflex conditioning, where an animal is ex-
posed to a CS, e.g., a tone, followed after a certain Inter-Stimulus Interval (ISI)
by an aversive US to the eye or periorbital area, e.g. an air-puff (Kehoe and
Macrae, 2002). After repeated paired stimulus presentations, the animal closes
the eyelids in anticipation of the expected air-puff; this anticipatory action is
known as the conditioned response. If a conditioned animal is subsequently
exposed to tones not followed by the air-puff US (CS-alone stimulation or ex-
tinction training), the previously acquired associative CR disappears and the
CS reacquires its initial neutral nature. Remarkably, if we repeat the initial
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training after extinction, the CRs are more rapidly acquired, a phenomenon
known as savings (Napier et al., 1992).

The cerebellum is critical for the acquisition of CRs in eyeblink conditioning
(Christian and Thompson, 2003; Hesslow and Yeo, 2002). The CS signal reaches
the cerebellum through the mossy fibers originating in the Pontine Nuclei (PN),
while the US signal is projected through the climbing fibers originating in the
Inferior Olive (IO). These two projections converge onto the cerebellar Purkinje
cells, that controls through dis-inhibition the deep nuclear cells. Deep nuclear
neurons synapse with the motor neurons responsible for the production of CRs.
Purkinje cells, the sole output of the cerebellar cortex, thus indirectly control the
motor neurons with an inverse relationship, they drive CRs by learning to timely
reduce their activity in presence of the CS (Jirenhed et al., 2007). These areas
of the cerebellar cortex, cerebellar nuclei and IO regulating the acquisition of
conditioned eyeblinks constitute one of the many cerebellar microcircuits, which
are considered the elementary and parallel computational units that form the
cerebellum (see Figure 1).

Based on these assumptions, we have previously developed a computational
model of learning in the cerebellum (Hofstotter et al., 2002; Verschure and
Mintz, 2001) that was implemented in aVLSI hardware and tested in a robot
learning task (Hofstotter et al., 2004). Here we show how an updated version of
this computational model can be deployed as a prototype of a neuro-prosthetic
device and interfaced with the brain of a living animal, replacing the function
of the animal’s inactivated cerebellum.

In this case, the computational model is fed not with the artificial signals
generated in the robot experiments, but with biosignals acquired through elec-
trodes. Biosignals, unlike the robot input signals, are inherently stochastic both
because of recording noise and inherent spiking fluctuations. For instance, the
climbing fibers (IO) spiking activity is known to have a 1 Hz baseline activity.
Indeed, the features of the experimental recordings presented here match the
known IO physiology, showing a baseline firing rate of 0.5-2 Hz (De Zeeuw et al.,
1998). Therefore, the encoding of the US in the IO will be very noisy, and will
prevent learning if we näıvely use the model in (Hofstotter et al., 2004). Hence,
our first goal is to update such model in order to cope with biosignals.

Our second goal is to validate the algorithms designed for interfacing and
operating a neuro-prosthetic system in an in-vivo bio-hybrid preparation. The
system under evaluation (Figure 1) implements a real-time model of cerebel-
lar learning that is driven by signals recorded directly from the PN and IO,
detecting CS and US events from these recording channels respectively. The
output of the neuro-prosthetic system is linked to a microstimulator targeting
the Facial Nucleus (FN), where proper stimulation would evoke well-timed CRs,
with latencies matched to the biological circuit being replaced (see Prueckl et al.
(2011a) for specifics on the physiology of this experiment). Since in our prepa-
ration the acquisition of natural CRs is precluded by anesthesia, any overt CRs
observed in the experiment are the result from associative learning occurring
solely within the synthetic system.

Finally, we address a learning stability issue emerged during the in-vivo test-
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ing phase: we detected a non-stationarity in the level of spontaneous activity
in the IO channel, and quantified its impact on the model performance. Even
though learning can still take place, learning stability is hindered and the pos-
sibility of chronic implantation is precluded. We thus implemented a variation
of the cerebellar algorithm that is robust under slow non-stationarities, in our
case slow fluctuations in the IO activity.

We believe that our approach defines a specific paradigm for the generation
of neuro-prosthetic systems that evolves following four steps: 1: identify the
input and output structures and their encoding, 2: identify the anatomical and
physiological principles underlying the computations performed by the target
system, 3: integrate steps 1 and 2 with the appropriate signal processing in a
single device and 4: miniaturise the neuro-prosthetic system while optimising
its power consumption. Here we emphasize steps 1-3 since we already previously
have demonstrated step 4 (Hofstotter et al., 2004; Bamford et al., 2012).

In summary, with this work we sought to provide further evidence for the
fundamental principle underlying our model; namely, that the activity of the IO
constitutes a teaching signal that controls the acquisition or extinction of CRs,
and that by regulating the IO activity, the Nucleo Olivary Inhibition (NOI)
stabilizes the CRs during paired CS-US training and drives extinction during
CS alone stimulation. Our results provide such evidence, and additionally, they
demonstrate at the design level the possibility of realizing long-term, noise-
resistant implantable low power neuro-prosthesis supporting the acquisition,
retention and extinction of novel behavior even if the biological substrate has
lost its learning capability due to trauma or ageing.

Methods

Cerebellar model

Latencies

It is well known in the domain of control theory that the latencies and delays
inherent in a system to be controlled play an important role in the design of the
controller. Here, our controller is based on the cerebellar microcircuit involved
in eye-blink conditioning. In nature, such a microcircuit must have internal-
ized the latencies to the eyeblink system in several ways, one of them arguably
being through the unusually long latency of the NOI (Hesslow, 1986) that we
had previously interpreted as allowing for the matching of the system delays
(Hofstotter et al., 2002). Informally, once an error signal reaches the IO, such a
delay indicates how far ahead of it the cerebellum should have taken a protective
action for it to be effective. Consistently with this view, in the computational
model that we employ the latency between the activation of the Deep Nucleus
(DN) and the onset of the inhibition of the IO (the NOI delay, Λnoi) sets the
anticipation of the CR execution relative to the expected US arrival (Hofstot-
ter et al., 2002) (see Figure 2). Therefore, we will first discuss the latencies
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Figure 1: Biological microcircuit and synthetic counterpart. Recording
(PN and IO) and stimulation sites. After amplification and filtering of the sig-
nals recorded in the afferent structures, discrete events retrieved from multi unit
activity are isolated by the event detection stages of the system, such that they
are fed to their counterparts in the synthetic cerebellum (PN and IO). In the
intact circuit, the repeated coincidence of CS and US signals within the cerebel-
lar cortex induces plasticity causing the cerebellum to respond to the CS with
a CR. In our model, once such a CR is acquired, it is relayed via the synthetic
DN to the facial nucleus (FN) of the rat as an electrical stimulation that causes
the animal to trigger the behavioral CR, i.e., the eyeblink. In addition, within
the model, the CR triggered by the DN inhibits the IO, preventing a US derived
signal from reaching the cerebellum once a protective action has already been
issued. Since anesthesia prevents acquisition in the rodent’s cerebellum, behav-
ioral CRs expressed in the set up studied here are controlled by the synthetic
circuit.

associated with the task of classical conditioning, since their specific properties
underlie the cerebellar computational model.

Concretely, setting a functional delay for the NOI requires knowledge of the
transmission or mechanical latencies involved in the task, otherwise the internal
timing of the CR and US signals would result in non-adaptive CRs coming too
late or too early with respect to the US air-puff. In other words, for the blink
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Figure 2: Intrinsic latencies of the eye-blink conditioning preparation.
A: ISI, Inter-stimulus interval; ωCS , latency between the peripheral CS stim-
ulation and the detection of its associated neuronal response in the PN; tCR,
internal response timing learned by the model between the CS detection and
the CR triggering; ωCR, latency between the neuronal triggering of the CR and
the effective eyelid closure, Λnoi, delay between the CR trigger and the onset of
the negative feedback loop inhibition; ωUS , latency between the US trigger and
the detection of its associated neural response in the IO. B: Same latencies as
in A for the minimum learnable ISI.

to anticipate the air-puff, Λnoi has to exceed the sum of the sensory latency
between the air-puff reaching the cornea and the US detection (ωUS) plus the
effector latency between the CR triggering by the DN and the effective eyelid
closure (ωCR):

Λnoi ≥ ωCR + ωUS (1)

In the literature this sum of afferent plus efferent latencies is referred to as
the delay of the error feedback (Miall et al., 1993). By setting Λnoi to this
minimal latency the CR and the US onsets will match. However, to achieve a
better protection form the US, the best temporal arrangement of CR and US is
that of the US onset coinciding with the middle of the CR. Given that we elicit
the CR by an electrical stimulation lasting 150 ms (Prueckl et al., 2011b), such
a temporal arrangement is achieved adding 75 ms to the minimal latency in Eq
1.

On the other hand, the sum of the latency between the onset of the CS
delivery and its detection (ωCS) plus the latency between the FN stimulation
and the CR execution (ωCR) affects the optimal internal timing (tCR) that the
model has to acquire for a given ISI:
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tCR = ISI − (ωCS + ωCR) (2)

This time interval is shorter than the external ISI since it accounts for the de-
tection and execution latencies. Note that diminishing tCR towards 0 we get the
minimum ISI that is learnable by the model, where CS detection immediately
triggers a CR:

minISI = ωCS + ωCR

For an ISI shorter than minISI , a CR initiated by the cerebellum will always
come after the US. For this reason, we will design a controller that only acquires
CRs whenever the ISI exceeds this value.

Computational model

In what follows we summarize the biological model based on (Hofstotter et al.,
2002; Verschure and Mintz, 2001) and upgraded to cope with biosignals. Our
model is based on the following assumptions:

1. the cerebellum is the brain area principally involved in the acquisition of
a CR in the delay classical conditioning paradigm;

2. the only inputs received by the cerebellum are the mossy fibers, carry-
ing CS-related information, and the climbing fibers, carrying US-related
information;

3. the mechanism responsible for the acquisition of a conditioned response is
plasticity at the parallel fiber to Purkinje cell synapses;

4. such plasticity is induced by the stimulation of parallel fiber, alone (Long
Term Potentiation - LTP) or jointly with climbing fiber (Long Term De-
pression - LTD);

5. IO, cerebellar cortex and DN are organized in distinct micro-complexes,
which constitute negative feedback loops over IO;

6. the timing of the CR is adapted to the length of the ISI by these olivo-
cortico-nuclear feedback loops that control the plasticity at parallel fiber-
Purkinje cell synapses by gating the climbing fiber error signal;

7. the training procedure leads to a pause in Purkinje cell activity following
CS presentation;

8. a CR is triggered by dis-inhibition of the deep nucleus by the cessation of
Purkinje cell firing;

9. Purkinje cells operate in two distinct modes: a spontaneous and a CS-
driven mode. Informally, the Purkinje cell is always maintained active
during spontaneous activity of the input parallel fiber. However, during
a CS presentation, Purkinje cells switch to a decaying activity. For a
detailed explanation see Hofstotter et al. (2004).

Here, in order to deploy the cerebellar model on a low power aVLSI platform,
we generated a computational model functionally equivalent to previous versions
(Hofstotter et al., 2004, 2002; Verschure and Mintz, 2001) albeit more abstract
from an anatomical standpoint to ensure computational efficiency.
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Figure 3: Functional model of the cerebellum. The processes in the top
row (white boxes) map PN activity into action; in the case of eyeblink con-
ditioning, tone detections into eyeblinks. Such mapping is controlled by the
memory parameter w. The shaded processes adapt the mapping, namely, they
are involved in the adjustment of w. The numbers identify specific processes.
The latencies affecting each of the recording and stimulating channels as well
as the parameters used in each process (see main text for an explanation).

Process descriptions The Trace generation, Scaling and Thresholding pro-
cesses (1, 2 and 3 in Figure 3) model the processing of information that enters
the cerebellum via the mossy fibers and leaves it through the excitatory axons
of deep nuclear cells that projects to red nucleus which, in turn, excites FN.
(Hesslow and Yeo, 2002; Christian and Thompson, 2003). The Trace generation
(1) process codes the time since the CS onset with a decaying trace having a
fixed initial value (τ0), final value (τ1) and duration (Λτ ). This trace defines
the memory span of the system; i.e. the maximum temporal gap between CS
detection and a CR execution learnable by the system. The Scaling (2) process
multiplies the trace with the memory parameter w, which is the only parameter
modified by learning. With w we mimic the changes in synaptic efficacy that
occur in the molecular layer, due to LTD in the parallel fiber to Purkinje cell
synapse and/or other kinds of associative plasticity (Dean et al., 2010). Lastly
the Thresholding (3) process triggers a CR whenever the value of the scaled
trace falls below a decision threshold (θCR). Within this process we collapse
all the transductions that occur post-synaptically from the Purkinje cells down
to the efferents of the deep nuclei. In short, these three processes map event
detections in the PN into stimulation of the rat FN. The parameter w regulates
the mapping and, by scaling the trace signal, controls whether a response is
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triggered or not, and if so, determines its timing in a way analogous to the
biological system.

Three processes control the negative feedback loop that stabilizes learning:
Inhibitory pulse (4), Delay (5) and Gating (6). The role of the negative feedback
in classical conditioning is to prevent the error signal triggered by the US from
reaching the cerebellar cortex if a CR has already been triggered (Medina et al.,
2001; Verschure and Mintz, 2001). Processes 4 and 5 set the shape of the
inhibitory square pulse. Its duration matches the duration of the CS trace, such
that the IO can be inhibited for the whole duration of the CS trace. Process 4
delays the pulse by Λnoi seconds. In practice, the value used was on the order
of 100 ms. The Gating process (6) suppresses IO detections that co-occur with
the inhibitory pulse. In summary, these components functionally reproduce the
inhibitory control of the deep nuclear cells over the IO (Bengtsson and Hesslow,
2006).

The last two components, Delay (7) and Coincidence detection (8), update
the associative weight w, thereby controlling the learning of the CR timing.
Process Delay delays the CS stimulus trace by Λnoi seconds (same value intro-
duced above). The resulting trace defines the temporal window wherein errors
detected by IO can be prevented by the cerebellum. For instance, if a US is
detected following a CS but ahead of this temporal window, then the CS-US
interval is too short and any CR initiated by the cerebellum after the CS de-
tection could not avoid the US (see eq. 1). Likewise, such a trace defines a
so-called eligibility window wherein IO activity can be associated with a given
PN detection. In short the system has a minimum ISI of Λnoi s, and a maxi-
mum ISI of Λnoi + Λτ s. Lastly, the Coincidence detection process (8) checks
whether event detections in the CS and US pathways coincide and updates w
accordingly. Namely, it decreases w every time an IO detection overlaps with
the eligibility trace, and increases w if no IO detection occurs during that pe-
riod. The function performed by these last two processes mimics the control
of plasticity in the parallel fiber-Purkinje cell synapse (Safo and Regehr, 2008;
Wang et al., 2000; Sarkisov and Wang, 2008). The initial value of w is set to
w0.

Calibration of the cerebellar model

Definition of the optimization problem We mentioned that the Coinci-
dence Detection process in Figure 3 modulates the w parameter thereby con-
trolling the acquisition and timing of CRs. In our implementation, the synaptic
efficacy w is modified in linear steps, namely, δd for depression and δp for po-
tentiation. The cerebellar model optimization consists of selecting the plasticity
parameters δd and δp that result in a desired learning behavior. We solve this
optimization problem in two different scenarios: with synthetic data or with
data directly obtained from the brain activity of the animal. With the former
we assess the properties of the model, whereas with the latter is applied in the
bio-hybrid preparation. In both cases, the data consists of a set of detections
in both recording sites of the system (PN and IO) and each set might contain
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evoked-detections (caused by the CS or the US, respectively) of spontaneous
events. We refer to the former as True Detections (TDs) and to the second as
False Alarms (FAs).

Informally, we impose that the learning dynamics of the system mirror the
behavior: when CSs and USs are paired the circuit should learn to produce CRs
within tens of trials; when in a trained animal CSs are not paired with USs, the
circuit should unlearn to produce CRs within tens of trials; all other conditions
should not alter the circuit transfer function. More formally, the optimization
problem is described by a linear system representing three types of constraints:
acquisition, extinction and stability (see Table 1).

ID Experimental
condition

Description

1 Acquisition Paired CS-US presentation leading to acquisition of
CRs

2 Extinction CS-alone trials with CR leading to extinction of CRs
3 Stability CS-alone or unpaired CS-US trials with no CR, caus-

ing no modification of the memory parameter

Table 1: Stimulation conditions for the closed-loop experiment. See text for
further explanation.

Estimation of plasticity events. PN (CS) and IO (US) detected or artifi-
cially generated events are coded in binary vectors P and I, where each element
is a time step and a value of 1 signals an event. The vector of eligibility traces
(Π, box 1 in Figure 3) is obtained by convolving P with the eligibility trace
waveform (ε):

Π = P ? ε

where ε is a rectangular pulse lasting Λτ s and delayed by Λnoi s. Here we
fixed these values to 0.3 s and 0.1 s, respectively. The first value is in good
accordance with the maximum interval between CS and US bridged by the
cerebellum in eyeblink conditioning (Kalmbach et al., 2009; Moyer et al., 1990),
whereas the second matches the most effective interval between parallel fiber
and climbing fiber stimulation for the induction of cerebellar LTD (Safo and
Regehr, 2008; Wang et al., 2000; Sarkisov and Wang, 2008).

Eligibility Trace Vector US Vector Plasticity
Π(t) = 1 I(t) = 1 Depression
Π(t) = 1 any I(t) Potentiation
Π(t) = 0 any I(t) No plasticity event

Table 2: Plasticity Conditions. See text for further explanation.
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Plasticity events occur under the conditions specified in Table 2. Firstly, a
necessary condition for a potentiation or depression event to occur at a given
time step (t) is that the eligibility trace is non-zero. Secondly, the number of
potentiation events is P =

∑
Π for potentiation occurs for every time step with

a non-zero CS eligibility trace. Thirdly, depression occurs when US detection
overlaps with the eligibility trace. Hence, the number of depression events can
be obtained with the scalar product of Π and I:

D = ΠT I (3)

Note that whenever a depression event occurs, it outweighs the default poten-
tiation events triggered by the plasticity trace Π, resulting in a net depression.

In the presence of CRs, D must be corrected to account for the IO events
(spontaneous or US-evoked) suppressed by the NOI. Note that since the timing
of inhibition depends on the triggering of the CR and the eligibility window is
anchored to the CS, rapidly elicited CRs are more effective in gating plasticity
than late CRs. In other words, the effectiveness of the gating decreases as the
CRs become more delayed. We can heuristically approximate the reduction in
IO events reaching the coincidence detection by multiplying the number of IO
detections by an estimated mean proportion of IO events not suppressed by the
NOI (σ̄),

D = ΠT (σ̄I) = σ̄ΠT I (4)

where σ̄ = 1 − σ, with σ being the proportion of IO events suppressed by
inhibition.

As the equation illustrates, this result can be computed simply by multiply-
ing the result of Eq. 3 by the factor σ̄.

Optimization of the plasticity parameters. At this point, having esti-
mated the number of plasticity events produced by two sets of event detections
in PN and IO, we obtain the optimal plasticity parameters (δp and δd) by solving
with weighted least squares the following system: P̄1 D̄1

P̄2 D̄2

P̄3 D̄3

[ δp
−δd

]
=

 −∆a/Ta
∆e/Te

0

 (5)

P̄i and D̄i are the mean plasticity events per trial, potentiation and depres-
sion respectively, and the sub-indexes indicate the experimental condition (see
Table 1). They are obtained by dividing D and P by the number of trials
contained in the training set. ∆a is an estimate of the change in w necessary
for acquisition and Ta sets the desired number of trials for acquisition. These
two values set a target mean change of w per trial. For instance, if the initial
value of w is 0.5 and we estimate that well-timed CRs occur when w reaches a
value of 0.3, then we set ∆a to 0.2. ∆e and Te are the same values applied to
extinction. As we declared in the assumptions of the biological model, and for
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consistency with classical cerebellar learning theory, that links learning in the
cerebellum with LTD in parallel fiber-Purkinje cell synapses (Ito et al., 1982;
Albus, 1971), we suppose that CR acquisition requires depression (decrease) of
the value of w and extinction, a potentiation (increase). Regarding the opti-
mization algorithm, we weighted more the stability constraint since it by itself
guarantees the convergence of the learning dynamics, i.e., paired CS-US stimu-
lation yields acquisition and CS-alone stimulation yields extinction. Informally,
if under spontaneous IO activity w has an average of 0 drift, then an increase
in IO activity will lead to acquisition and a decrease, to extinction. Once this
constraint is satisfied, the acquisition and extinction constraints modulate the
rate of either learning process.

Adaptive calibration of the model

In the previous section we have introduced a calibration method that assumes
stationary bio-signals during the experiment. Crucially, this is a strong as-
sumption that will hardly ever be met under in-vivo conditions. In our case,
for instance, the rate of IO activity in the bio-hybrid experiment markedly fluc-
tuated producing non-associative modifications in the synaptic efficacy w. For
this reason, here we introduce an adaptive version of the calibration method
that supports non-stationary responses in IO activity. Since the recalibration
has to occur without resorting to additional training data, we keep the same
acquisition and extinction constraints used for the initial calibration, and we
only update the stability constraint, introducing in this constraint the current
estimation of the rate of spontaneous IO activity.

The recalibration is periodically performed, with a fixed time interval. In
the experiment we used 150 seconds, that corresponds roughly to 10 trials. Such
recalibration requires an estimate of the ongoing level of spontaneous activity
in the IO (IOfar), where the sub-index far stands for the false alarm rate. To
compute this estimate we count the number of IO detections between recali-
brations. Note that, since the system is blind to whether the detections are
spontaneous or evoked, i.e. it has no knowledge whether stimuli are presented
or not, for the estimation of IOfar all detections are considered spontaneous.
During acquisition, given that some of the IO detections will be US-evoked, this
results in an over-estimation of the true IOfar: the estimate is more accurate
for a higher proportion of spontaneous detections to evoked ones, a result that
can be easily achieved using large Inter-Trial Intervals (ITI).

Since the IO rate only affects the number of depression events, only D̄3 in Eq.
5 (accounting for the number of depression events during spontaneous activity)
has to be updated, whereas the other term has no dependence on IO activity. By
updating regularly such parameter we provide an algorithm simple enough to
be implemented in a low power VLSI solution. Indeed, algebraic manipulation
shows that we can compute the solution to the optimization for each of the two
plasticity parameters as a ratio of two polynomials with a maximum degree of
1 (for the derivation see appendix). For instance, in the case of δp we have:
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δp =
α2IO

2
far + α1IOfar + α0

β2IO2
far + β1IOfar + β0

where the coefficients of the polynomials are determined only by the training
data. For the detailed derivation of this formula see Appendix 2.

Work-flow of the bio-hybrid experiment

The methods introduced so far were common to the simulation and in-vivo ex-
periments. In what follows we introduce the methodology specifically developed
for the bio-hybrid preparation.

Animal Preparation and Recordings The experimental procedure has
been previously described in Prueckl et al. (2011a). In summary, the bio-hybrid
experiment was performed on one näıve male Sprague Dawley rat. The rat was
housed in a cage with ad lib food and water under a reversed 12 hour dark/light
cycle. On the experiment day, the rat was anesthetized with i.p. injection of
Ketamine Hydrochloride (100 mg/kg) and Xylazine (5 mg/kg) mixture. Body
temperature was maintained by a heating pad set to 37o C and supplementary
doses of Xylazine and Ketamine were administered as required. The rat’s head
was positioned in a stereotaxic headholder (Kopf Instruments). The skull was
exposed, connective tissue was removed and skull was dried using a H2O2 solu-
tion (30%). Openings were drilled in the skull over the left IO and PN to allow
the insertion of recording electrodes. The electrodes – a 5 Mohm tungsten elec-
trode (A-M Systems, WA) for the IO, and a 10-channel titanium-nitride micro
electrode array (Faculty of Engineering, Tel Aviv University) for the PN – were
lowered vertically into the brainstem until a reliable response to tone (PN) and
airpuff (IO) was observed. Signals from both recording sites were band-pass
filtered (300 - 3000 kHz) to work in the multi unit activity range. A stimulat-
ing electrode was also placed in the facial nucleus and tested to induce reliable
eye-blinks when 200 mA 0.1 ms constant-current pulses with a frequency of 80
Hz for 150 ms were delivered.

Once the experiment was completed, a direct current was passed through
the electrodes (0.5 mA for the IO and 1 mA for the PN), the rat was sacri-
ficed with an overdose of pentobarbital and perfused transcardially (0.9% saline
followed by 10% formalin solution), the brain was removed and sliced into 50
µm coronal sections, stained with thionine blue, and electrode locations were
confirmed under a light microscope. All procedures were approved by the Tel
Aviv University Animal Care and Use Committee (P-05-004).

Experimental protocol. For the classical conditioning preparation we used
as the CS a white-noise stimulus at 67-70 dB with a duration of 450 ms and a
150 ms ong air-puff as the US. The presence of CRs was verified by recording
the electromyography from the orbicularis oculi. The Inter-Stimulus Interval
was set to 300 ms and the ITI was randomized between 10 and 15 seconds.
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After validating the responsiveness of the multi unit activity signal to the
air-puff and the tone by visual inspection of both peri-stimulus time histograms
of multi unit activity events, we recorded a training data-set that was com-
prised of 30 trials with paired CS-US presentation, followed by 2 minutes of
spontaneous activity. This data-set was then used to calibrate the synthetic
cerebellum (see below). After calibration we proceeded with the classical condi-
tioning paradigm, presenting the animal with paired CS-US stimulations until
stable CRs are observed. Subsequently, CS-alone presentations were delivered
until extinction of the CRs has been achieved.

Signal processing. The goal of the signal processing stage is to detect in the
multi unit activity signal the onset of the responses to the CS and US, i.e., to the
tone and the aripuff stimuli, respectively. Given the intended implementation
in a low power VLSI solution, we limit ourselves to low complexity algorithms.
Briefly, we detect sustained increases in the variability of the multi unit activity
signal occurring after each stimulus presentation. This is achieved with the
following steps: first we subtract from the signal a running estimation of the
mean and rectify the resulting signal. Secondly, the signal is smoothed to obtain
a short-term temporal average that serves as a measure monotonically related to
the variability increase. Lastly, event detection occurs every time the resulting
variability signal surpasses a certain detection threshold.

We a priori defined the windows of possible True Detections (TDs) for each
channel (10-150 ms after the trigger in the PN and 5-205 ms after the trigger in
the IO). Likewise, the performance of the signal detection can be summarized
with the True Detections Ratio (TDR) and the False Alarm Rate (FAR), where
the TDR indicates the proportion of stimuli raising at least one detection within
the TD window, and the FAR the frequency of events detections during the
periods of no stimulation, i.e., outside the TD window. Note that since in the
IO we found a FAR between 0.5 and 2 Hz, we can compare the IOfar with the
spontaneous levels of activity in the IO (Jirenhed et al., 2007).

Estimation of the event detections. With the calibration data-set we esti-
mate for both channels the detection performance during early acquisition trials
(before any CR is triggered). To estimate the number of detections during CS-
alone trials we combine the PN data from the paired stimulation trials with
IO data from the spontaneous activity period. This is done in order not to
excessively extend the calibration phase.

Optimization of the signal detection regimes. To signal an event detec-
tion we have to first set a detection threshold. Such selection poses a multi-
objective optimization problem since we want to simultaneously maximize the
TDs and minimize the false alarms, and we do not know a priori which is the
best trade-off of both measures that maximizes the chance of success in our
experiment. To overcome this problem we iterate the optimization process over
a set of threshold configurations for both input channels, and then select a pos-
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teriori the one yielding the minimum error in the optimization of the plasticity
parameters (eq. 5). Likewise, the optimization process, and not us, selects the
optimum trade-off between TDs and false alarms. Note that the simplicity of
the calibration method previously introduced allows us to iterate over a great
number of possible threshold configurations in very little time.

Use of the model with simulated data

Before deploying the computational model in the bio-hybrid setup, we tested
the performance of the model with artificially generated data. To this end
we generate a set of detections for each channel according to a certain pair
of TDR and FAR statistics. From these two statistics we produce the binary
vectors of detections P and I, and for this we convert the TDR and FAR to
event probabilities per time step. We obtain the probability of detection in the
absence of stimulation by multiplying the FAR by the model time step, which is
2 ms. Regarding TDs, to convert the TDR to a probability we have to consider
the size of the TD window. Operationally, since we interpret the TDR as the
probability of getting at least one event within the detection window, we have to
find the event detection probability yielding no events during the TD window
with a probability of 1 − TDR. This event detection probability is equal to
1− n
√

1− TDR, where n is the size of the TD window in time steps.

Results

Simulation experiments

Performance of the model with spontaneous activity in the IO

As a first step, we test whether our model supports the acquisition and extinc-
tion of CRs when the IO displays spontaneous activity (see parameters in Table
3). The outcome of a representative simulation shows that indeed the model
adapts well to the case of baseline IO activity (Figure 4A). It acquires well-
timed CRs in CS-US paired trials and extinguishes them in CS-alone unpaired
trials (Figure 4A and 5A), and, importantly, the parameter w reaches a stable
plateau after complete extinction (Figure 5B). We stress that the stabilization
occurring at the end of extinction even in the presence of CS alone stimulations,
stems from the stability condition in equation 5. If we remove this constraint
the overt behavioral results are similar (Figure 4B and Figure 5A) but the un-
derlying memory dynamics differ (Figure 5B). Indeed, behaviorally both models
only differ in the extinction phase, which is slower for the model with stability.
However, in regard to the model’s state, without stability, the synaptic efficacy
w grows also after extinction of the CRs has been accomplished. Note that,
in consequence this can make reacquisition harder than acquisition if the ex-
tinction training is maintained, which goes against the experimental evidence
(Kehoe and Macrae, 2002). In conclusion, the computational model of the cere-
bellum is also functional when the IO has baseline activity, requiring only a
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Figure 4: Raster plots of the inputs and outputs of the model with
and without stability constraint. A. Model with stability constraint. PN
detections (green), IO detections (black) and CR triggers (blue, well-timed thick
and late thin). CS (yellow area) and US (pink area) periods. The horizontal
dashed red line separates acquisition and extinction phases. Vertical blue line
marks the limit for well-timed CRs. B. Model without stability constraint.
Data plotted as in A.

proper calibration of the plasticity parameters.

Figure 5: Behavior of the model with simulated data. A. Behavioral
performance. Percentage of CRs per block of trials of the model fitted with
stability constraint (solid line) and without (dashed line). The vertical dotted
line separates acquisition and extinction training. B. Trajectory of w in the
model fitted with stability constraint (dashed line) and without (solid line).
The horizontal green dotted line marks the level above which the model does
not trigger any CRs. Blocks of 10 trials.
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Parameter Value

Cerebellar model
CS trace:
τ0 1
τ1 0.5
Λτ 350 ms

Λnoi 100 ms
θCR 0.2
w0 0.5

Signal Detection
PNtd 0.95
PNfar 0 Hz
IOtd 0.75
IOfar 1.0 Hz

Fitting constraints
∆a, ∆e 0.2
Ta, Te 40

Table 3: Parameters of the simulation.

Effect of the latencies of the cerebellar model

We previously discussed the relevance of the latencies in the design of the con-
troller. Here we will illustrate with two examples the functional implications of
the two latencies implemented in the model, namely, the latency of the NOI and
the latency of the plasticity trace. We recall that in our model, both latencies
are set to the same value, namely, Λnoi s.

Figure 6: Results with and without delayed NOI. A. Raster plot with the
output of the model with the delay of the NOI set to 0 s. B. Trajectory of w
in the model with a delay of 100 ms in the NOI (solid line) and with no delay
(dashed line). The horizontal green dotted line marks the level above which the
model does not trigger any CRs. Blocks of 10 trials.
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The effects of the NOI latency on the timing of the CRs have already
been discussed in the literature at the theoretical level (Hofstotter et al., 2002;
Hesslow and Ivarsson, 1994), and demonstrated in experimental set-ups (Her-
reros Alonso and Verschure, 2013). Here, and because of the noisy input con-
ditions, we see that if we do not apply any delay to the NOI, the triggered
CR eventually anticipates the US, but by too short a latency too be consid-
ered effective (Figure 6A). Therefore, even though the model triggers CRs, they
are maladaptively timed. Indeed, the synaptic efficacy w fails to reach a level
sufficiently low to initiate well-timed CRs, as it does when the latency of the
NOI is properly set (Figure 6B). Note however that the jitter of the trace of the
synaptic efficacy w occasionally brings the CR triggers close to the criterion of
correct timing. Given that, if such a jitter will be increased it would be possi-
ble for occasional CRs to anticipate the US sufficiently to be characterized as
well-timed. This occurs if, for instance, the signal to noise ratio of the IO signal
decreases (7B, with TDs in the IO lowered from 70% to 50%) or if we force the
learning to be faster (7A). This by no means indicates that the model works
better if the signal conditions are worse, it only indicates that as the dynamics
of the model become more noisy (7C), some well-timed CRs may incidentally
be triggered, even if the delay of the NOI is not correctly set.

Not delaying the plasticity trace leads to a different kind of non adaptive
behavior. In this case, if we set an ISI below the minimum ISI described in Eq.
1, the computational model without delayed plasticity acquires CRs that can
only be late CRs by definition (Figure 8B). In contrast, setting the appropriate
delay to the plasticity trace avoids building any association between CS and US
that are too close in time (Figure 8A).

Bio-hybrid experiment

Evaluation of the training data We started the bio-hybrid experiment
recording a training data set composed of 30 trials of paired CS-US stimulation,
with an ISI of 300 ms and an ITI of 10 s. After applying the signal processing
algorithms (see Methods) we built the Receiver Operating Characteristic (ROC)
curve for each of the channels (Figure 9). The PN channel TDs reached 100%
with a False Alarm Rate close to 0.1 Hz while the IO displayed TDs near 50%
for the range of optimal FARs (∼ 1 Hz). Therefore the PN channel was reliable
while the IO channel was poor from the detection standpoint.

Optimization of the plasticity parameters and signal detection regimes
The following phase entailed tuning the plasticity parameters and selecting the
optimal signal detection thresholds. The optimization process selected detection
thresholds yielding a percentage of TDs of 48.6% and a FAR of 1.14 Hz for the
IO channel, and a 91.4% of TDs with a FAR of 0.11 Hz for the PN.

The model calibration set the potentiation and depression steps (δp and δd)
to 0.0161 and 3.36e-5 respectively.

The offline simulation parameterized with the previous values is shown in
Figure 10. First of all, on average acquisition occurs in 40 trials with an asymp-
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Figure 7: Results with non-delayed NOI inhibition in different condi-
tions. Raster plots with the output of the model with the delay of the NOI set
to 0 s. B. the model constraint to acquire CRs twice as fast or with A. a ratio
of TDs in the IO lowered to 50%. C. Traces of the synaptic efficacy w for the
simulation in Figure 6 (black) compared to the simulations in panel A (dotted
red) and B (dotted blue).

totic performance of 40% well-timed CRs. Secondly, there is low chance of
obtaining total extinction after 120 trials of CS-alone stimulation. Thus, the
simulations predict that a low detection quality in the IO channel may hinder
extinction.

Evaluation of the bio-hybrid experiment After the preliminary assess-
ment of the quality of the biosignals, we proceeded with the online classical
conditioning experiment (Figure 11). The experiment lasted 1h 20min and
comprised 190 CS-US stimulation trials (acquisition) followed by 180 CS-alone
trials (extinction), with randomized ITIs between 10 and 15 s. In Figure 11
we display events detected and stimulations triggered by the neuro-prosthetic
system. For the whole experiment, in the PN there was a TDR in of 75.5% and
a FAR of 0.1 Hz, that include a high number of late CS detections (Figure 11).
Notably, the number of PN detections during baseline was very low (only 5 false
alarms in 80 minutes). In the IO we obtained a TDR of 38% and a FAR of 1.2
Hz.

Detections in both channels were delayed by tens of milliseconds with respect
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Figure 8: Effect of the delayed plasticity trace on the behavior. A
Model with plasticity trace starting Λnoi s after each PN detection. B. Model
with plasticity trace starting right after each PN detection. Data plotted as in
Figure 4

.

Figure 9: Event detection performance for the recording sites. ROC
curves for the IO (A) and the PN (B) event detections.

to the stimulus trigger. The mean latency of the TDs in the PN (ωCS) was of
96.2 ms after the CS trigger (Figure 12A) whereas the mean latency in the IO
channel (ωUS) was of 68.5 ms (Figure 12B).

The experiment was successful in terms of behavior: well-timed CRs were
triggered with regularity towards the end of the acquisition phase, and no CR
was triggered during the last 90 trials of the extinction training (Figure 11
and 12C). The first response appeared at trial 29, but the first well-timed CR
came only at trial 118. Notice that towards the end of acquisition the series
of well-timed CRs appeared regular. After the onset of the extinction trials
(trial 191) well-timed CRs were rapidly extinguished. A block-by-block analysis
reveals that the performance fluctuated during acquisition (Figure 12C) and
that extinction of well-timed CRs was very rapid, in total there are only 4 well-
timed CRs during extinction, the last one appearing at trial 220, i.e., after 30
trials of extinction. However, the extinction of late CRs was more gradual,
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Figure 10: Performance of the experiment predicted by the training
data. A. Trajectory of the memory parameter after 2500 simulations plotted in
blocks of 10 trials. The simulated experiment contained 120 trials of acquisition
and 180 trials of extinction. Distribution of the block-by-block values of w
(gray-scale) with mean (blue) and and output of a sample simulation (red).
We indicate the levels of the weight that result in late (upper green line) and
well-timed CRs (lower green line). The transition from acquisition to extinction
training is marked by a vertical line. B. Predicted behavioral performance after
2500 simulations. Percentage of well-timed CRs. Distribution of the block-by-
block performance (gray-scale) with mean (blue) and result (red) of a sample
simulation (same as in A).

encompassing blocks 21 to 29, i.e. total extinction required 100 trials. No CR
was triggered by the system in the last 60 trials of the experiment. Regarding
the timing, well-timed CRs occurred on average 50 ms ahead of the US trigger
(Figure 11E).

The evolution of the synaptic efficacy w is displayed in Figure 13. We esti-
mate that given our setup CRs follow a PN event whenever the value of w goes
below 0.4. However, for such CRs to be anticipatory, w should settle at 0.28 or
below. During the experiment, w decreased steadily during the first 60 trials,
down to a value of 0.29. Afterwards the decrease decelerated. The dynamics
of w suggest that learning has reached an asymptotic-level by the end of the
acquisition stage (Figure 13). The mean value of w during well-timed CRs was
0.25, corresponding to CRs triggered on average 140 ms after the PN detection.
Thus, for an ISI of 300 ms the model acquired an internal timing (tCR) of 140
ms.

Thus, in conclusion, at a first level of analysis, the results of the bio-hybrid
experiment were correct both from the behavioral point of view and also regard-
ing the dynamics of the underlying memory parameter stored in the synthetic
cerebellum.

Instability of the activity during the recording Having said that, there
were two major caveats in the experiment. First, due to an artifact introduced
by the electrical stimulation of the CR, the signal of the IO was masked for 2
seconds after each CR. This masking was performed at the signal acquisition
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stage (Prueckl et al., 2011b). For this reason, no events reached the computa-
tional model of the cerebellum for 2 seconds after each CR trigger. Under such
circumstances the model’s NOI became superfluous, because for all its extent
there was no IO detection to be inhibited. Or, in other words, the mask at the
signal acquisition stage acted as a NOI with 0 latency and longer duration. We
have already argued that the latency of the NOI is necessary for consistently
achieving a correct timing of the CRs (Figure 6). Thus, in summary, on the one
hand, it is reasonable to assume that the well-timed CRs were in part a conse-
quence of the noisy conditions of the input setup (e.g., a IOtd of 38%), and on
the other, it is also reasonable to expect that in the absence of the stimulation
artifact the synthetic cerebellum would have achieved a higher proportion of
well-timed CRs.

Second, our calibration of the cerebellar model assumes that the level of
spontaneous activity in the IO remains constant. If the IO spontaneous activity
significantly deviates from the one estimated during calibration, then w will
drift, eventually leading to either acquisition or extinction. Since during the
conditioning experiment we observed that the spontaneous activity fluctuated
(Figure 14), there is the possibility that the behavior observed did not result
from associative learning but from changes in w due to oscillations in the IO

Figure 11: Event detections and triggers during the online experi-
ment. A. Raster plot with the PN detections (blue dots; well-timed PNs are
thicker), IO detections (black), and CR triggers (blue dots; well-timed triggers
are thicker). The CS (yellow area) and US (pink area) periods are indicated.
Blue line separates well-timed from late CRs. The horizontal dashed red line
separates acquisition and extinction phases.
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spontaneous activity. In particular, given that the IO spontaneous activity
increased during acquisition and decreased during extinction such fluctuations
might have caused or favored the behavioral result.

To perform an a posteriori control for this, we checked whether the observed
oscillations in spontaneous activity may lead to acquisition by themselves even in
the presence of temporally unrelated CSs and USs. We tested this by simulating
unpaired CS-US presentations. For this, we generate experiments with shuffled
IO detections within each trial. After performing 20000 simulations, we observed
that the increased spontaneous activity of the IO causes a decrement in w during
the acquisition phase for unpaired stimulation (Figure 15A). Considering the
behavior (Figure 15B) in the average simulation the decrease of w yielded to
the triggering of a small number of CRs. These results both at the level of

Figure 12: Quantitative results. A. Events detected in the PN. His-
togram of PN detections relative to the CS-trigger: TDs (black bars) and FAs
(gray bars); in this case all FAs are late CS-detections. CS period (yellow area)
and US period (pink area). B. Events detected in the IO. Detections in the
IO sorted relative to the US-trigger. Data plotted as in A). C. Behavioural
performance of the bio-hybrid. Percentage of well-timed CRs during ac-
quisition and extinction (solid line). CRs that were not triggered at least 20 ms
ahead of the US trigger appear as late-CRs (dashed line). Each block contains
10 trials. D. Timing of CRs. Histogram of the CRs: well-timed (black bars)
and late ones (gray bars). CS period (yellow area) and US period (pink area).
The information is extracted from trials 118 to 190.
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Figure 13: Weight trajectory during the experiment. The dashed vertical
line separates the acquisition and extinction phases.

the memory parameter and the behavior were clearly below the performance
observed on the bio-hybrid experiment but demonstrated nonetheless that under
experimental conditions with big variability in the recorded signals, the model
might acquire spurious associations.

Calibration method adapted to fluctuating IO activity

Lastly, we tackle the problem of the instability of the IO activity evidenced
in the previous section. For this we apply the adaptive calibration method
(see Methods). We test this method with data from the bio-hybrid preparation,
aiming to show that with the adaptive calibration, the cerebellar model becomes
robust against slow fluctuations in the baseline IO activity. As a caveat, notice
however, that in the bio-hybrid experiment, by definition of a closed-loop set-up,
the data recorded during the session depended on the output of the model. In
this case, the data recorded was affected by the electrical stimulation in the FN
driving the CR. Thus, to cancel out this effect we replaced the 3 seconds of the
IO signal occurring after each CR, by the signal extracted from random trials
with no CR.

The results (Figure 16) now clearly separate the performance between the
unpaired- and paired-stimulation experiments. Most importantly, there is no
acquisition of CRs during unpaired stimulation. In this case, the fluctuations of
the baseline IO rate do not push w further than +/- 0.1 from the starting value,
both during acquisition and extinction. Regarding the performance, in average
there are no well-timed CRs with unpaired CS-US training. On the contrary,
in the simulated acquisition and extinction experiment, the overall behavior
of acquisition followed by extinction is preserved. In this experiment the CR
performance decreases relative to the result with the bio-hybrid, especially by
the end of acquisition, when the recorded IO baseline rate was higher. The
reason is that now a high rate of spontaneous detections in the IO diminishes
the relative saliency of the US-evoked events, because such a high rate harms
rather than helps acquisition. Thus, this simulation confirms that if the same
conditions of signal instability of the bio-hybrid experiment are repeated, with
the adaptive calibration method we can ensure that any CRs observed will
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Figure 14: Fluctuations in the spontaneous IO rate. Mean IO rate in
each trial of the experiment. The horizontal dotted line marks the 1.14 Hz level
of activity. The vertical dashed line marks the transition from acquisition to
extinction trials.

specifically be due to the CS-US association.

Discussion

In this paper we have addressed the challenge of defining, interfacing and val-
idating a neuro-prosthetic system for the cerebellum. More in detail, we have:
defined a biologically grounded computational model of the circuit targeted for
substitution; defined its input and output structures and decoded input events;
implemented a prosthetic cerebellum and interfaced it to a rat brain. Our
results show that our bio-hybrid preparation shows behaviorally and physio-
logically valid forms of acquisition and extinction of the conditioned eye-blink
response. Our neuro-prosthetic system learned to associate a tone with an air-
puff, and as result to trigger an anticipatory closure of the eyelid. Since motor
CRs are not acquired or expressed under such anesthesia regime, the observed
eye-blinks are produced by the synthetic system. The fact that acquired CRs
can be abolished by extinction training also indicates that the CRs result from
a learning process induced by the contingent association of the CS and the US,
thus reproducing the hallmark result of Pavlovian classical conditioning.

Here we have presented a step towards the enhancement and/or recovery of
the capabilities of central nervous system through neuro-prosthetic solutions.
Recently, another closed-loop solution targeting a different structure of the
brain, the hippocampus (Berger et al., 2011) has been presented. This system,
however, follows a different approach where firstly the subject had to acquire a
specific stimulus response association that was recorded by the neuro-prosthetic
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Figure 15: Observed performance vs. performance during simulated
unpaired acquisition. A. Acquisition during paired CS-US training versus
simulated unpaired CS-US. Trajectory of the weight during the acquisition phase
of the experiment (black line) plotted against results of 20000 simulations of
unpaired training. Distribution of the simulation results (grayscale), median
(blue dotted line) and the 0.05 bottom of the distribution (red line). Blocks of 10
trials. B. Behavioral performance during acquisition against performance in the
simulations. Percentage of CRs during acquisition in the experiment (black line)
plotted against the percentage obtained in the simulations. Distribution of the
simulation performances (grayscale), median (blue dotted) and the upper 0.1 of
the distribution (red line). C. Acquisition during paired CS-US training versus
simulated unpaired CS-US with and without negative feedback loop. Trajectory
of the weight during the extinction phase of the experiment (black line) plotted
against results of 20000 simulations of unpaired training. Distribution of the
simulation results with the negative feedback-loop (grayscale and boxplots) and
without it (red line, mean).

system, and subsequently the recorded state was used to recover this association
after lesion to the hippocampus. Compared to such model, instead of aiming
at restoring an acquired memory, our neuro-prosthesic aims to fully replace its
target structure and to realize the capability to form new memories.

In a parallel effort, the computational model of the cerebellum here pre-
sented, together with the signal detection algorithms and the signal acquisition
components, have been implemented in a low power VLSI (Bamford et al.,
2012). Hence, with the results presented here we provide the feasibility require-
ments of a neuro-prosthetic system, encompassing issues related to stability and
non-stationarities.

An earlier version of the computational model presented here was imple-
mented in an aVLSI platform and interfaced with a robot that was conditioned
to a visual stimulus predicting a collision (Verschure and Mintz, 2001; Hofstotter
et al., 2002, 2004). Thus, after showing that our approach allowed miniaturiza-
tion and autonomous performance, we have now demonstrated that the model
can be applied to the processing of inputs coming from a living brain that are
specific to the computation performed, i.e. CS, US, and trigger its specific
output: the CR.

In our experiment, the IO channel provided the only teaching signal to the
system. This channel displayed a spontaneous level of activity in the 0.5-2
Hz range, i.e., the level of activity expected in a single IO cell. However, in
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Figure 16: Performance with the adaptive calibration method. A. Tra-
jectory of the memory parameter w plotted in blocks of 10 trials. Distribution
of the performace of the simulations of unpaired CS-US stimulation (grayscale),
with mean (dotted blue) and lower 10% (dotted red), for a total of 2500 simula-
tions of 36 blocks. Trajectory of the simulated classical conditioning experiment
(solid black), with 18 blocks of acquisition and 18 blocks of extinction. The tran-
sition from acquisition to extinction training is marked by a vertical line. B.
Behavioral performance of the same simulations. Percentage of well-timed CRs
per block. Results plotted with the same convention as in A.

healthy animals, acquisition of an eyeblink CR is controlled by a cerebellar
micro-complex, encompassing not one, but a number of IO cells. This imposes
different constraints on the learning system because the IO derived error signal
for our neuro-prosthetic is in all likelihood much impoverished as compared to its
biological counterpart. Hence, we expect that the key feature to strengthen in
our approach is the quality and precision of the data acquisition of the biological
preparation. For this we are planning further experiments in a chronic implant
together with higher bandwidth physiology.

We reported two major caveats in the experimental preparation: the insta-
bility of the IO spontaneous rate, and presence of a stimulation artifact that
precluded reliable read-out of the IO signal. Regarding the first problem, in the
bio-hybrid experiment we computed the plasticity parameters assuming that the
spontaneous IO rate inferred from the calibration data remained stable through-
out the experiment. However, we observed that fluctuations in the spontaneous
IO firing rate induced a drift in the w synaptic weight. Comparing this per-
formance with simulated unpaired CS-US experiments, we saw that the perfor-
mance with unpaired stimulation tended to be below the one observed in our
experiment, but we also saw that the system triggered non-associative CRs.
Next, we showed in simulations that with an adaptive calibration method it
is possible to compensate for the fluctuations in the IO activity and thus to
prevent the acquisition of non-associative CRs (see figure 16). We can conclude
from the bio-hybrid experiment that our silicon cerebellum neuro-prosthetic can
be tuned to deal with marked fluctuations of its input brain signals. This also
demonstrates the robustness of the learning principles implemented in the cere-
bellum and in particular the negative feedback loop implemented by the DN-IO
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system.
Additionally, the fluctuations of the IO signal reduced the accuracy of the

performance predicted during the calibration step. This justifies the future
development of calibration methods accounting for spontaneous drifts in the
recorded neural activity.

Regarding the problem of the stimulation artifact, addressing it falls outside
the scope of the current analysis. We emphasize that this problem is an issue
of engineering of the stimulation system that the biological system does not
encounter. We are investigating two solutions. First, given the very short
duration of the stimulation pulses (Prueckl et al., 2011b) it is possible to apply
a more precise masking to the IO signal, timed to these pulses, that would
minimize the signal loss. A second possibility is to avoid electrical stimulation
altogether using optogenetics. These aspects need to be taken into account in
a next iteration of the neural-prosthesis development.

In conclusion, from a bio-engineering perspective we demonstrate that our
approach supports outsourcing the acquisition and extinction of an adaptive
reflex in an acute preparation to a linked neuro-prosthetic system. Given the
modularity of the cerebellum, and the common assumption that the cerebellar
algorithm performs similar computations throughout its different microcircuits
(Dean et al., 2010; Albus, 1971; Marr, 1969), this work could be applied to
support other adaptive reflexes as well, as long as their afferent and efferent
circuitry could be identified. However, the multifunctionality of a microzone
and/or its interactions with other cerebellar microcircuits are not addressed
with our approach and would require interconnecting and synchronizing multiple
prosthetic microcircuits working in parallel. Additional work is required to
reproduce this result with the aVLSI synthetic system, testing this approach
with a chronic implant, where one could assess the stability of the acquired
memory across days and study long-term bio-compatibility issues.
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Abbreviation Meaning
IO Inferior Olive
PN Pontine Nuclei
DN Deep Nuclei
FN Facial Nucleus
NOI Nucleo Olivary Inhibition
CS Conditioning Stimulus
CR Conditioned Response
US Unconditioned Stimulus
UR Unconditioned Response
ISI Inter Stimulus Interval
ITI Inter Trial Interval
Λnoi Latency of the NOI
δp potentiation step size
δd depression step size
TDR proportion of true detections
FAR False Alarm Rate
PNtd proportion of true detections in the PN
PNfar rate of false alarms in the PN
IOtd proportion of true detections in the IO
IOfar rate of false alarms in the IO
w synaptic efficacy
ωCS latency between CS trigger and CS event detection
ωUS latency between US trigger and US event detection
ωCR latency between CR trigger and its physical execution
Pi number of potentiation events in the condition i
P̄i mean number of potentiation events per trial in the condition i
Di number of depression events in the condition i
D̄i mean number of depression events per trial in the condition i
∆a estimated amount of change in w required for acquisition
∆e estimated amount of change in w required for extinction
Ta desired number of trials required for acquistion
Te desired number of trials required for extinction

Table 4: List of abbreviations.

Appendix 1: Mathematical definition of the cere-
bellar model

In what follows we provide a compact definition of the cerebellar computational
model, describing each of the processes separately. The only additional notation
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introduced here for convenience are the sample time s, that it is used to access
the state of a variable in the previous step of the computation, and the the
Heaviside function, H(x), defined as

H(x) =

{
1 if x > 1
0 elsewhere

The signals and the processes correspond to the ones presented in Figure
3. Note that except T(t), S(t) and w(t), that are real-valued, the rest of the
signals are binary.

Process 1: Trace generation

T(t) = τ
P(t)
0

{
H(T(t− s)− τ1)

(
T(t− s)− τ0 − τ1

Λτ

)}(1−P(t))

Process 2: Scaling
S(t) = w(t)T(t)

Process 3: Thresholding

F(t) = H(θCR − S(t))H(S(t− s)− θCR)

Process 4: Inhibitory Pulse

N(t) = N(t− s) + F(t)− F(t− Λτ )

Process 5: Delay of inhibitory pulse

NΛ(t) = N(t− Λnoi)

Process 6: Gating
C(t) = I(t)(1−NΛ(t))

Process 7: Delay of plasticity trace

Π(t) = H(T(t− Λnoi))

Process 8: Coincidence detection

w(t) = w(t− s) + Π(t)(δp −C(t)δd)
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Appendix 2: Derivation of the update function of
the adaptive calibration model

We assume that during spontaneous activity, detections in the IO and the PN
are independent. Consequently, the probability of a simultaneous detection in
both channels is defined as PNfarIOfar.

D̄3 = PNfarΛτIOfarT3 (6)

where T3 is the duration of the original recording used for the calibration
and Λτ is the duration of the plasticity trace.

The linear system to optimize is given by: P̄1 D̄1

P̄2 D̄2

P̄3 D̄3

[ δp
−δd

]
=

 −∆a/Ta
∆e/Te

0

 (7)

The expressed in matrix notation becomes:

A x = b (8)

Adding the cost matrices for the weighted least squares we get:

C A x = C b

where

C =

 c1 0 0
0 c2 0
0 0 c3

 (9)

With this, the least squares solution for x is given by

x = (ATCA)−1ATC b

First, ATCA expressed in terms of plasticity events and costs is the following
matrix[

c1P̄
2
1 + c2P̄

2
2 + c3P̄

2
3 c1P̄1D̄1 + c2P̄2D̄2 + c3P̄3D̄3

c1P̄1D̄1 + c2P̄2D̄2 + c3P̄3D̄3 c1D̄
2
1 + c2D̄

2
2 + c3D̄

2
3

]
(10)

Grouping and renaming all the terms that do not depend on D̄3 we can
express this matrix as [

χ1 χ2 + ψ2D̄3

χ2 + ψ2D̄3 χ3 + ψ3D̄
2
3

]
(11)

The expressions for the χ and ψ terms are given at the end of this appendix.
The determinant of this matrix, D, expressed as polynomial of D̄3 is

(χ1ψ3 + ψ2
2)D̄2

3 + 2χ2ψ2D̄3 + (χ1χ3 − χ2
2)
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using Eq. 6, we can simplify the notation, and express this determinant as a
polynomial of IOfar, which is the input variable that will be updated at each
re-calibration.

β2IO
2
far + β1IOfar + β0

Now we can express (ATCA)−1ATC as

1

D

[
χ3 + ψ3D̄

2
3 −χ2 − ψ2D̄3

−χ2 − ψ2D̄3 χ1

] [
c1P̄1 c2P̄2 c3P̄3

c1D̄1 c2D̄2 c3D̄3

]
where the first two factor are the inverse of ATCA and the third term in the
result of ATC.

Performing the algebra, we obtain the following matrix expression[
(χ3 + ψ3D̄

2
3)c1P̄1 − (χ2 + ψ2D̄3)c1D̄1 (χ3 + ψ3D̄

2
3)c2P̄2 − (χ2 + ψ2D̄3)c2D̄2

χ1c1D̄1 − (χ2 + ψ2D̄3)c1P̄1 χ1c2D̄2 − (χ2 + ψ2D̄3)c2P̄2

]
were we have omitted the third column of the matrix, since it will be canceled
by the zero in the third of row b.

The last step to solve the system is to multiply by b, after what we obtain
the solution for the δp and δp:

δp = − 1
D

∆a

Ta

(
(χ3 + ψ3D̄

2
3)c1P̄1 − (χ2 + ψ2D̄3)c1D̄1

)
+ 1

D
∆e

Te

(
(χ3 + ψ3D̄

2
3)c2P̄2 − (χ2 + ψ2D̄3)c2D̄2

)
and

δd = 1
D

∆a

Ta

(
χ1c1D̄1 − (χ2 + ψ2D̄3)c1P̄1

)
− 1

D
∆e

Te

(
χ1c2D̄2 − (χ2 + ψ2D̄3)c2P̄2

)
where we see that D̄3 appears in the numerator of δp with degree 2 and in the
numerator of δd with degree 1. In both cases, the denominator is given by the
determinant D, which is another polynomial of degree 2. Therefore, we can
express each parameter as a ratio of two polynomials.

δp =
α2IO

2
far + α1IOfar + α0

β2IO2
far + β1IOfar + β0

δp =
γ1IOfar + γ0

β2IO2
far + β1IOfar + β0

In consequence, the adaptive calibration algorithm requires to pre-compute
8 coefficients. The expression for each coefficient is detailed next:
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β0 = (χ1χ3 − χ2
2)

β1 = 2χ2ψ2

β2 = (χ1ψ3 + ψ2
2)

α0 = ∆a

Ta
(χ2c1D̄1 − χ3c1P̄1) + ∆e

Te
(χ3c1P̄1 − χ2c2D̄2)

α1 = ∆a

Ta
ψ2c1D̄1 − ∆e

Te
ψ3c2D̄2

α2 = ∆e

Te
ψ3c2P̄2 − ∆a

Ta
ψ3c1P̄1

γ0 = ∆a

Ta
(χ1c1D̄1 − χ2c1P̄1) + ∆e

Te
(χ1c2D̄2 − χ2c2P̄2)

γ1 = ∆e

Te
ψ2c2P̄2 − ∆a

Ta
ψ2c1P̄1

where χ and ψ are given by

χ1 = c1P̄
2
1 + c2P̄

2
2 + c3P̄

2
3

χ2 = c1P̄1D̄1 + c2P̄2D̄2

χ3 = c1D̄
2
1 + c2D̄

2
2

ψ2 = c3P̄3

ψ3 = c3
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