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Abstract—The sense of touch is essential in our everyday life as
it allows us to interact with our environment. The same applies to
robots and users of prostheses but requires sensing solutions that
are power efficient and allow edge and embedded computation.
In this paper, we present a capacitive, neuromorphic, event-
driven, tactile sensor. The mixed-mode subthreshold circuit is
implemented in 180nm technology and achieves a sensitivity of
≈ 30Hz/N in simulation with the SPICE simulation platform
spectre.

Index Terms—Event-driven tactile sensor, Neuromorphic cir-
cuits, Asynchronous CMOS 180-nm technology, Leaky integrate
and fire neuron, Capacitive

I. INTRODUCTION

In humans, touch is one of the earliest developed senses [1].
It allows us to modulate contact forces when handling objects,
identify textures and shapes, even blindfolded, and actively
explore our environment. Mechanoreceptors of the human
hairless skin are broadly divided into two categories, encoding
either contact force (slowly adapting mechanoreceptor (SA)),
or change in contact force (rapidly adapting mechanoreceptor
(RA)) into spikes. Together, the activity of the different types
of mechanoreceptors supports the perception of many different
tactile features and qualities [2]. Tactile sensing is becoming
increasingly important in the fields of robotics, prosthetics,
IoT and many others. It allows robots to safely interact with
their environment and improve performance in grasping and
manipulation, and it allows prosthesis users to feel the objects
they manipulate [3], [4]. Unlike in biology, artificial tactile
sensors are conventionally sampled periodically, and a scalar
pressure value is returned. However, a high enough sampling
rate is needed to ensure no significant contact is missed
or communicated with delay. However, in periods without
contact, the sensors produce redundant data, the volume of
which increases with the sampling rate.

In event-driven sensor arrays by contrast, and similarly to
biological sensing, each sensor operates asynchronously and
locally encodes change or stimulus intensity information into
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Fig. 1. The capacitance model is based on the iCub fingertip and fitted to
measurements conducted with the omega.3 robot. The blue dots represent the
experimental data points and the orange line is defined by the fitted function.

binary events [5]. The advantage of these sensors is their
dynamic temporal resolution, which adapts to the stimulus by
increasing the sampling rate when needed and decreasing the
output activity for stationary inputs. They are characterised
by energy efficiency, partly due to system-level energy saving
through less data processing, and partly due to operation
in the mixed-mode subthreshold regime whereby analogue
computations are performed with very low currents. There are
examples of these sensors in the visual, auditory, olfactory and
tactile modalities [6]–[8].

There are several event-driven implementations of tactile
sensors using resistive, capacitive and piezoelectric transduc-
ers. However, many of them are implemented using post-
processing methods on FPGAs or uC for periodically sampled
sensors. While these implementations can serve as tools for
system-level application development [8]–[11], they do not
reach the same low-power performance and miniaturisation
as their mixed-mode subthreshold counterparts.

Currently, mixed-mode subthreshold tactile circuits imple-
mented are based on piezoelectric transduction [12], [13],
excluding opto-tactile neuromorphic sensors, which are an in-
teresting alternative class of device, but having their own chal-
lenges (geometrical, illumination etc) [14]. While piezoelectric
transducers are well suited for detecting fast changes and emu-
late the behaviour of rapidly adapting mechanoreceptors (RAs)
in combination with change detection circuitry [13], their
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Fig. 2. The proposed readout circuit for a mixed-mode subthreshold capacitive event-driven force intensity sensor. The circuit is comprised of an input stage
(blue), a signal shaping stage (orange) and a DPI-neuron (pink). Bias voltages provided to the circuit are marked by rectangles.

suitability for an intensity readout emulating the behaviour
of slowly adapting mechanoreceptors (SAs) is limited to the
time of change because the charge generated due to pressure
dissipates over time. Capacitive transducers have, instead, the
advantage of keeping their capacitance vs. time, and remaining
passive components without constantly drawing current and
dissipating energy (unlike resistive and inductive transducers).

Commonly, the readout of capacitive sensors is clocked
[15], and the capacitance is inferred by the time necessary to
charge and discharge the capacitor. In this study, we developed
a mixed-mode subthreshold circuit that can continuously mon-
itor the capacitance value and encode the absolute capacitance
value into spike rates. This type of encoding loosely emulates
the behaviour of SAs. The circuit has been designed in
CADENCE with X-FAB XP018 technology, simulated with
the SPICE simulation platform spectre and sent to production.
In this paper, we describe the circuit, explain its working
principle and present its characterisation by means of transient
simulations. We show that the circuit responds to forces in
a range between 0N and 20N, with a sensitivity of up to
28.62Hz/N, at a power consumption of 777 nW.

In combination with the previously proposed piezoelec-
tric neuromorphic tactile sensors loosely reproducing the be-
haviour of RA, the capacitive neuromorphic sensors loosely
inspired on the SA can enrich the encoding capability of
artificial tactile sensing within a single low-power device.
This is especially important in tactile feedback in prosthetic
devices, where the elicited sensation is more natural for
stimulation reproducing the characteristic firing pattern of RA
and SA [16].

TABLE I
DIMENSIONS OF THE USED TRANSISTORS.

Transistor Width Length

MpDiff ,MnDiff 2.2u 4.4u
Mp1,Mp2 2u 4u
Mpreset 250n 2u
Neuron 2u 2u

II. METHODS

The neuromorphic capacitive sensor is shown in Fig. 2. It is
composed of an input and amplification stage, a signal shaping
stage and a spike generation stage (the DPI-neuron [17], [18]).
The capacitor changes capacitance due to the application of
force and subsequent deformation. The input stage, [19], trans-
lates the value of capacitance into a voltage. The dimensions
of the transistors are presented in Table I and optimized for
the correct capacitance scaling and mismatch.

The coupling between the sensing capacitor Cf and Cfb

amplifies the capacitance value with respect to its idle state
value. The MpReset transistor resets the circuit at the beginning
of operation to set the resting potential of Vdiff and Vgate.
When the capacitance changes, charge moves onto Vgate. The
amplified change is reflected in Vdiff which serves as input
to the signal shaping stage. In this stage, the voltage that
correlates with the input force is converted into a current fed
to the output DPI-neuron that converts it into a spike train with
an instantaneous firing rate proportional to the input force.

To initialise the circuit before use, MpReset is turned on, and
the nodes Vgate and Vdiff are shorted, defining Vgate as the volt-
age which allows MpDiff to source as much current as MnDiff

sinks. Once the reset transistor is turned off, any change in the
sensing capacitance Cf will result in a movement of charge
onto Vgate. The voltage difference between the InputBias and
the resting voltage of Vgate introduces an amplification of
the change in capacity on Vgate. In our implementation, the
change in that node is then compensated by feedback across
Cfb, resulting in a further amplification with the ratio of
Cf/(Cfb + CMpDiff) onto the node Vdiff. The advantage of
including Cfb is that the amplification ratio of the circuit is
well matched to the sensing Cf .

In a simplified model, without the signal shaping stage, Vdiff

would directly drive Mp3 to produce Iexc and charge the neu-
ron. However, depending on the sign of InputBias−Vgate(t0),
Vdiff will increase with force (negative) or decrease with force
(positive). While the high InputBias would enable a readout
where the frequency increases with input force (for a standard
LIF implementation), it would also introduce the neuron to



high Iexc in the resting state. Hence, a stage that removes
that offset is advisable. Since for most Vdiff configurations, the
resting Vdiff ranges between roughly 1.2V and 1.4V we chose
to operate with an InputBias smaller than that, to allow for a
wider range of operation.

Hence, in the presented circuit with an increase in force, Vdiff

will increase. However, if the circuit shall exhibit increasing
spike rates over increasing pressure, then the voltage driving
the input transistor to the LIF must decrease with increasing
force for our standard LIF implementation. The second stage
of the circuit facilitates this conversion. Unlike in a p-type
source-follower, the Mp1 does not function as the fixed current
source but as the input transistor. The gate of Mp2 instead
is provided with a constant voltage. Following Kirchhoff’s
law, the current through both transistors must be the same.
Assuming that both transistors stay in saturation, for Mp2, to
permit the current, |Vin − Offset| = |Vdd − Vdiff|. Thus, Vin

must decrease, when Vdiff increases. Depending on the biasing
of this circuit, the offset and slope of the current fed to the
neuron and, hence, the output firing rate of the neuron can be
modulated, trading off sensitivity, saturation and mean activity
of the neuron.

Finally, VIn modulates the input current to the DPI-leaky
integrate-and-fire neuron (LIF) neuron (Iexc) that translates
the current into a spike train. In the integration process of the
DPI neuron, the diode connection of Mp6 leads to a saturating
process that decreases the effect of the input current for Vmem

close to the firing threshold of the neuron.
The circuit was characterized with transient simulations

with spectre, using transistor models from X-FAB XP018
design kit. The model of the capacitive transducer is based
on the iCub robot’s fingertip. The sensors are a sandwich
consisting of electrodes printed on a flexible PCB and a
three-layer fabric combining a dielectric layer, a conductive
layer connected to ground, and a protective top layer [20].
The model of capacitance vs force, shown in Fig. 1, is fitted
from measurement data collected with an Omega.3 robot [21],
neglecting the fabric’s time response due to the setup’s limited
time response. The obtained force-capacitance equation was
implemented in VERILOG-A and integrated into the circuit
simulation.

III. RESULTS

Fig. 3 shows the circuit’s transient response to constant
input forces, ranging from 0N to 10N in step increments and
decrements of 2N. We measured the voltages Vgate, Vdiff, Vin

and the neuron’s instantaneous firing rate. At time t = 1 s
(marked by the red bar) the reset pulse connects Vgate and
Vdiff, that reach the same resting-state voltage. Once the force
is applied, Vdiff changes more strongly than Vgate due to the
amplification introduced by the coupled capacitors. Once the
force is removed, they move to share the same resting-state
voltage again. When the force increases, Vdiff increases and Vin

decreases; vice-versa, when Vdiff drops after the withyoudrawal
of the force, Vin rises back to its resting voltage. The neuron’s
spiking activity increases with increasing force and goes back

Fig. 3. Neuromorphic capacitive sensor transient behaviour: The red bar at
1 s indicates the timing of the reset pulse. Top: Force input to the circuit in
increments of 2N every two seconds. Middle: Vgate (blue), Vdiff (orange) and
Vin (green). Bottom: Instantaneous mean firing rate, computed as the inverse
of the inter-spike interval. It can only be computed when two spikes occur,
i.e. when a force is applied and the change of the capacitance is large enough.

to zero after the force’s withdrawal, matching the input force’s
behaviour. While the force vs frequency behaviour shows non-
linearity (saturation of frequency), it follows the behaviour of
the capacitive transducer shown in Fig. 1.

We characterized the impact of the Offset voltage on the
circuit’s spiking behaviour and power consumption vs the input
force. Fig. 4 shows the circuit’s spike rate (inverse of the inter-
spike interval, in red) and the power consumption (in blue) in
response to step-forces from 0N to 20N in increments of
0.5N, for Offset corresponding to 0.6V, 0.8V and 1.0V.
The instantaneous firing rate roughly follows the shape of
the capacitance vs. force, increasing with increasing force and
saturating for high forces. However, the three curves differ
strongly in the sensitivity they provide and the spike rate for no
force input. For Offset = 1.0V, the circuit starts to slowly spike
at forces around 2N and saturates at 10N. In contrast, for
Offset = 0.8V, the circuit is already sensitive to low forces and
allows their differentiation but also rapidly saturates at 10N
where higher forces can no longer be distinguished. Further
decreasing the offset to Offset = 0.6V increases the circuit’s
dynamic range, as the frequency response covers at least three
times the range obtained with lower offsets. While the curve
transitions towards saturation at 10N as well, the transition
is more gradual and still allows for differentiation at high
forces. However, when no force is applied, the circuit still
spikes at roughly 30Hz. While this offset could be removed
by increasing the neuron’s leaking current, that increase would
further increase the static power consumption. The blue curves
show clearly that the power consumption increases with in-
creasing force and decreasing Offset, respectively. The circuit’s
sensitivity, idle spiking frequency and power consumption for
the different Offset voltages are reported Table II.

Fig. 5 qualitatively compares the circuit’s output to the
behaviour of SA as reported by [22]. The circuit receives a
similarly shaped input as the biological mechanoreceptors. The



TABLE II
COMPARISON OF Offset PROPERTIES.

Offset 0.6V 0.8V 1.0V

Sensitivity 28.6Hz/N 9.17Hz/N 3.94Hz/N
Idle Frequency 35.6Hz 1.46Hz 0Hz

Power 777nW 83.5nW 6.20nW

instantaneous firing rate of the circuit matches the force input
for the whole stimulus duration. In contrast, the Merkel cell
(SAI) fires most rapidly in the up-ramping of the stimulus,
and the cell’s activity decreases with time during constant
stimulation. The circuit’s behaviour is closer to that of the
Ruffini corpuscle (SAII), which increases activity with increas-
ing stimulus intensity and keeps a consistent firing rate for
constant stimulation. The corpuscle stops spiking at the onset
of the downward ramp. While the behaviour is not matched
perfectly, the circuit behaves remarkably similar to the SAII.

IV. CONCLUSIONS

This paper showed the basic functionality of a neuromor-
phic, event-driven, capacitive tactile sensor that is not limited
to a fixed sampling rate. The circuit enables a capacitive
intensity readout with tunable sensitivity. An increase in sensi-
tivity is traded off with higher power consumption. However,
the circuit flexibility allows system designers to define their
requirements, adapting the circuit behaviour to the application
at hand. The high resting frequency for Offset = 0.6V could
be reduced by increasing the neuron’s leak current. While this
would increase the power consumption in the resting state, the
decrease in spikes would decrease the necessary computational
power and transmission bandwidth at a system level.

The presented preliminary results show the circuit’s main
functionality in converting the input force into an informative
spike train that closely resembles the behaviour of biological
tactile sensors. When available, a deeper characterization and
exploration of the parameter space will be performed with a
circuit prototype. Specifically, we will explore biases of the
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Fig. 4. Capacitive neuromorphic sensor output frequency (red) and power
consumption (blue) vs input force for varying Offset voltages. The black lines
indicate the sensor’s resolution for each bias setting and their y-intercepts
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Fig. 5. Qualitative comparison with biological tactile afferents: (top) Response
of the two types of SA found in hairless human skin, Merkel cells (SAI, on
the left) and Ruffini corpuscles (SAII, on the right), to stimulation. (bottom)
Membrane potential of the DPI-neuron in the neuromorphic capacitive sensor
in response to stimulation. The peaks correspond to the action potentials
shown as vertical bars in the top plots.

neuron that could further change the shape of the signal, such
as the DPI gain (Thr), the offset of the resting firing rate (Leak)
and the refractory period (Ref).

The circuit could further be extended to achieve a higher
level of biological plausibility. One possible extension could
provide self-inhibitory feedback, enabling the spike-rate adap-
tation for continuous inputs characteristic of SAI mechanore-
ceptors. To emulate the behaviour of the change-sensitive
rapidly adapting mechanoreceptors (RAs) it could further
be possible to connect the neuron’s reset to the input-stage
reset. That connection would reset Vgate after every spike and
thus encode change in force. Although this neuron directly
resets itself, it would be possible to perform reset via an
asynchronous digital communication protocol, guaranteeing
the delivery of spikes to downstream circuitry.

Once we receive the produced circuit on-chip, we will
further evaluate the possibility and impact of leak in MpReset

and the resulting drift in Vgate. For for the experiments with
the circuit on chip, the biases will be generated by a parameter
generator on chip inspired by [6]. Depending on the strength
of the leak, one way to deal with it could be to apply regular
reset pulses, or if the leak is too fast, the circuit could be
transformed into a change-detecting circuit.

We have shown that with the proposed circuit, we can read
out force intensities with a capacitive transducer without being
limited by a frame rate, with a measured sensitivity of up to
28.6Hz/N.
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