
1

An Asynchronous Quasi-Delay-Insensitive
Bit-Serial Variable-Length Relative Address-Event

Codec for Distributed Neuromorphic Systems
Simeon Bamford1, Ole Richter2,3, and Chiara Bartolozzi 1

1Event-Driven Perception for Robotics, Italian Institute of Technology, via San Quirico 19D, Genova, Italy
2Embedded Systems Engineering, DTU Compute, Technical University of Denmark

3Asynchronous VLSI and Architecture Group, School of Engineering and Applied Science, Yale University, USA

Abstract—To distribute neuromorphic sensing and spiking
computation across different sensing or computing units, there
is the need for an event communication protocol that supports
the chaining together of arbitrarily many units, so that complex
systems can be constructed and modified without fully spec-
ifying the design in advance. In embedded applications, such
protocol should support serial communication, to minimise the
use of wires. We have designed an asynchronous codec and we
demonstrate its conformance to quasi-delay-insensitive design
principles. The codec as shown here works with address-events
which carry a one-bit payload (such as the polarity of a physical
change that evokes a sensor event) and could be extensible to
different payloads. The address encoding is relative to the sender
or receiver, address-events are transmitted in a bit-serial manner,
and the length of an address encoding is variable, such that
there is no upper limit to the virtual address space. This enables
scalable and economical sensory designs in flexible electronics,
templated and dense ASIC arrays, and multi-chip composed
sensors, by enabling design reuse on all levels.

I. INTRODUCTION

Neuromorphic engineering promises benefits in edge sens-
ing and computing which include low power operation, low
latency sensing, and robust real-world perception. Sensorising
and controlling robotic bodies or multi-agent systems are
promising applications [1].

For building more capable and intelligent systems, scala-
bility is a key factor. Neuromorphic systems consist in large
numbers of computational elements often distributed, which
communicate by spikes or events similar to biological neural
systems [2]–[4]. In contrast to biological systems, where
dedicated axons connect neurons and the connectivity does
not require multiplexing, the communication infrastructure
supporting the flexible routing of spikes is delivered via time-
division multiplexing and typically carry information about

CB acknowledges the financial support of the National Biodiversity Future
Center funded under the National Recovery and Resilience Plan (NRRP),
Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of
16 December 2021, rectified by Decree n.3175 of 18 December 2021
of Italian Ministry of University and Research funded by the European
Union – NextGenerationEU. CB and SB acknowledge the financial support
from PNRR MUR Project PE000013 ”Future Artificial Intelligence Research
(hereafter FAIR)”, funded by the European Union – NextGenerationEU. SB
acknowledges helpful discussions with Rajit Manohar and Ned Bingham.

the identity of the sending elements (addresses) [5]. Given
the speed of signals across metal wires with respect to the
conduction speed of axons and the time constants of neural
activity, the time-multiplexing paradigm can achieve similar
capabilities to biological systems on a fixed and static 2-
dimensional substrate. Although the spiking activity of the
sensing and computing elements of neuromorphic systems is
asynchronous, communication requires either clocked [6] or
handshaking implementations [7], [8] and the data transmis-
sion can come in different implementation flavors, such as
parallel [7], semi-parallel [9], [10] or serial [6], [11].

Most protocol implementations embed assumptions about
the system architecture; e.g., in parallel implementations [12]
the bus width, fixed at design time, limits the number of
address bits that can be delivered and with it the maximum
system size, and the trade-off between system size and wiring.
To achieve distributed neuromorphic sensing (and computa-
tion) with both superior design and post fabrication scalability,
there is the need for a communication protocol implementation
that supports the chaining together of arbitrarily many units,
so that complex and flexible systems can be constructed and
modified without changes to a unit design.

It is advantageous to minimise the need for synchronisation
between communicating units to enable the highest degree
of parallel operation possible. We have therefore designed
an asynchronous serial address-event encoder and decoder
circuits with relative and dynamical addressing. The proposed
codec is serial, to limit the wiring towards its integration
on robotic platforms and highly space-limited sensory arrays.
It supports the inclusion of additional units by inherently
adapting the addressing space to the number of connected
units without redesign and fabrication. The routing fabric does
not therefore impose an address-space constraint as observed
in most implementations [2], [3]. It is based on quasi-delay
insensitive handshaking, to avoid the need for synchronisa-
tion across units while maintaining optimal performance and
flexible wire length.

2

A. Background - Asynchronous digital communication and
quasi-delay-insensitive logic

In mainstream digital microelectronics, a clock signal is
distributed widely across a computational core, or an entire
chip, and is used to drive the rhythm of computation. Local
circuits each compute a result based on their inputs and
then wait until the clock pulse arrives in order to output
the result of their computation. This design style greatly
simplifies the problem of designing logic circuits to perform
complex computation by limiting the speed to the slowest
element in the system. When scaling flexible and fine grained
parallel systems synchronization becomes a significant design
constraint resulting in large circuit overhead or significantly
degraded system performance [13].

Asynchronous circuits avoid the above scaling problems by
design [14]. By synchronising computation and data trans-
mission only with direct communication partners, a fine-
grained, distributed parallel system is formed. Communication
between the elements is coordinated by handshaking, which is
performed using request and acknowledgement signals [15]. 1.

While synchronous systems need to guarantee timing rel-
ative to a clock, asynchronous systems need to ensure the
timing order of handshaking signals to guarantee correct op-
eration [16]. In flexible or distributed systems where the signal
wiring delay can not be precisely estimated at component
design time, a specific encoding 1-of-n or dual-rail encoding
can be used. By merging the data and handshaking signal on
the same wires, the circuit becomes delay-insensitive and will
function under all delay conditions. Historically, to enable
practical complex computations [17] the ’isochronous fork
assumption’ was introduced and became known as Quasi-
Delay-Insensitive (QDI) logic [14]. The delay insensitivity
comes at a price, the dual-rail encoding introduces significant
wire, area and power consumption overhead in standard bit-
parallel circuit design. Bit-serial design can mitigate this
overhead by fixing the number of wires and gates are used
while maintaining the QDI properties.

B. Background - Event-based communication in neuromorphic
systems

Event-based communication is a fundamental concept in
neuromorphic computing, which is inspired by the way the
brain transfers information using spikes. Spikes are generated
by individual neurons in response to stimuli, such as changes
in illumination triggering cells in the retina, the skin, or the
cochlea, and are transmitted between neurons to carry infor-
mation. While biological neurons communicate spikes along
dedicated transmission lines (axons and dendrites), the same
can not be implemented in a fixed 2-dimensional substrate
with limited I/O ports. To solve this issue, Sivilotti [8] demon-
strated spike-generating circuits sending requests to peripheral
circuitry, which acknowledged them; events were queued in
production order and sent off-chip via a time-multiplexed
shared bus using asynchronous digital communication.

These systems, subsequently called Address-Event Repre-
sentation (AER), output packets that encode the binary address

1These signals are sometimes referred to as ’ready’ and ’valid’.

of the sender (neuron or sensory element) of each event.
Because microelectronic timescales far exceed biological ionic
ones, the propagation delay of the address-events were consid-
ered negligible, thus the systems operated on the principle of
”time represents itself”. To increase throughput these systems
are highly pipelined.

Although the first AER implementations were not QDI,
later work established this as a defacto standard [18], to
avoid manual timing closure. AER now refers to a large
class of protocols which move around address-events within
the context of arrays of sensing and processing elements
(’neurons’). Wiring space may be plentiful inside an ASIC
but in dense arrays, multi-ASIC compositions or interchip
connections, bus size becomes an important consideration.

A challenge arises between the optimal function of encoding
and decoding physical arrays, which are theoretically optimal
as a binary or custom tree [11], [19], and the tiling capability
of the system, which follows a line, grid or mesh [20].
Making each element as close to identical as possible is
particularly important in systems with many end points or
leaves. Limited space for wires and repeatable fixed elements
or sensor elements require fixed size parallel buses [21] or
special serial links. In densely packed one ([2], [22]) and two
([9], [23]–[25]) dimensional arrays, a classic global encoder
or decoder (P-AER) [7] comprising of a single pipeline stage,
is the most widespread.

Many variants have been developed: Address-events are
delivered in two or more words [10]; serialised into single
bits [26] to transmit words with variable lengths enabling
unbounded address spaces; furthermore arithmetic may be
performed on these variable-length serialised addresses [27].
Routing and mapping systems have been developed to trans-
form the transmitted address [28] and events to ’fan out’,
i.e. to be received by multiple receivers [29], [30]. Addresses
of receiving neurons can be treated as relative addresses or
routing instructions in a potentially infinite space of neurons
[2].

The system described in this manuscript uses incrementa-
tion of digital addresses in encoding (and decrementation in
decoding). A variable-length bit-serial encoding allows devices
to be arbitrarily long without requiring redesign, making it
flexible to be deployed in a wide range of sensory and neural
processing applications.

II. METHODS

A. Target system

This AER implementation has been developed for a one-
dimensional array of sensory cells, each of which can at any
moment produce a digital event in response to a change in
a physical stimulus, such as tactile pressure, light intensity,
chemical concentration, etc. As a physical stimulus can either
increase or decrease, each event carries a data payload of one
bit, the event polarity, that distinguishes the direction of change

3

(these polarities are denoted hereafter as ’a’ and ’b’ 2, and the
address-events can be described as ’polarised’). More broadly,
the system we propose is agnostic to the type of circuit that
generates events, being a neuron in a spiking neural network,
or a sensing element in a sensor array. However here we
present designs and results only for polarised address-events.
It’s possible to reuse these designs directly by treating the
polarity as the least significant bit of a system of addresses,
but whether the events come from a sensory cell or a pair
of neurons, the circuits presented assume that the events are
produced in a mutually exclusive manner - once an event
source has produced an event of a given polarity, by activating
one of two request signals, it will neither cancel that request
nor activate the other polarity request until the first request has
been acknowledged. By following the rule that every change
of state must be acknowledged, the event source provides a
valid input to a QDI communication system. In this paper, we
assume that an ideal delay-insensitive source is available and
do not describe its inner workings.

Fig. 1(a) shows a block-level description of the proposed
system. Each sensor cell is connected locally to an ’encoder’
circuit. The encoder circuits are also connected one to the
other in a chain.

The sensor cell outputs two data request wires, one for each
polarity. Together with an acknowledge wire which outputs
from the encoder block, these form a ’one-of-two’ channel
from the sensor to the encoder block. ’one-of-two’ refers to
the behavioural rules for the channel: the transmission of an
event starts by switching exactly one of the two data-request
wires. This is the first step in a ’four-phase handshake’ (fig.
1 (b)). After making a request, the sensor must wait until the
encoder block raises the acknowledge wire3. After this, the
sensor must lower the request, and the encoder block must
wait for the request to lower before lowering the acknowledge.
Only after this may another request of either polarity be made.

The encoder block is subdivided into two blocks. Firstly,
an ’increment’ block, which receives a channel from upstream
blocks and increments the addresses of address-events which
pass through it; secondly a merge block, which passes through
address-events from upstream blocks whilst inserting requests
from the local sensor cell, assigning these the address ’1’, and
arbitrating between these two sources where necessary. The
channels which pass along the chain are one-of-four channels
- as motivated in Sec. II-B.

’Exit’ is marked after the final block in the chain: at this
point the chain should be attached to a receiver, which also
implements the four-phase handshake protocol and handles
onward processing. The addresses assigned to the sensors are
referred to this point in the chain. This is why the left-most
sensor in the chain is referred to as ’Sensor 3’: the sensor
and encoder blocks are all identical and no addresses are

2We avoid terms such as ’ON’/’OFF’, ’0’/’1’, ’inc’/’dec’, some of which
appear in the literature of event-based sensing, partly to avoid possible
confusion with other concepts in logic design and partly to introduce a
conceptual separation between the events themselves and the physical triggers
of these events, which may be different in different sensor types.

3In practise it is often more convenient to implement an acknowledgement
as an active-low signal, which is then referred to as an ’enable’ signal; however
we talk about acknowledgement because it may be conceptually easier.

preassigned, but rather, once sensor 3 introduces an event
with the address 1, it must pass through two increment blocks
before arriving at the exit, and so it ends up with ’3’ as its
address.

B. Address-event encoding

Addresses are encoded as binary words, but each bit is
transmitted in series, and the sequence has a variable length.
The least-significant bit (LSB) is transmitted first, up to the
most-significant bit (MSB). As the address-events have a one-
bit data payload, the transmission of the polarity bit is used
to indicate that the address sequence has finished. There are
therefore four possible tokens, of which only one will be
transmitted at a time: ’address 0’, ’address 1’, ’polarity a’ and
’polarity b’; this is the reason for using a one-of-four protocol.
As every binary number apart from 0 has 1 as its MSB, the
address numbering can start from 1 sparing the transmission of
the MSB. Table I demonstrates the encoding. It also shows a
fixed-width binary encoding for comparison: No matter which
width is chosen (16 bits in the example), unnecessary bits
are transmitted in the case of lower addresses, whilst higher
addresses eventually exceed the capacity of the address space.

Address Address in 16-bit Our encoding
in decimal binary (MSB to LSB)

0 0000000000000000 not used
1 0000000000000001 P
2 0000000000000010 0 P
3 0000000000000011 1 P
4 0000000000000100 0 0 P
5 0000000000000101 1 0 P
6 0000000000000110 0 1 P
7 0000000000000111 1 1 P
8 0000000000001000 0 0 0 P
9 0000000000001001 1 0 0 P

99999 overflow (17 bits) 1 1 1 1 1 0 0 1 0 1 1 0 0 0 0 1 P
TABLE I

REPRESENTATION OF ADDRESSES IN OUR CHOSEN ENCODING. THE
SEQUENCES TO THE RIGHT ARE SENT IN ORDER FROM LEFT (LSB) TO

RIGHT (MSB). P IS A TOKEN WHICH INDICATES THE POLARITY OF THE
ADDRESS-EVENT AND WHICH REPLACES THE MSB. DETAILED

DESCRIPTION IN THE TEXT.

C. Increment block

Fig. 2 shows how a regular digital incrementer works.
Fig. 2(a) gives a symbolic representation of a circuit whose
role is to handle a single bit of an incrementation. It has two
input ports, labelled ’bit in’ and ’carry in’. Assuming these
ports hold valid data, the look-up table (fig. 2(b)) shows what
outputs it will produce at its two output ports ’bit out’ and
’carry out’. Fig. 2(c) shows how three of these blocks can be
combined to increment a 3-bit number. The example number
’3’ is presented to the ’bit in’ ports of the three blocks, whilst
a ’1’ is presented to the ’carry in’ port of the block for the
least-significant bit. The least significant bit is calculated first,
and its carry-out port provides the value ’1’ to the carry-in
port of the next bit, allowing that in turn to be calculated.
Referring to the look-up table, it can be seen that the number
’4’ is produced as a 3-bit binary output. The ’carry out’ bit of
the block for the most-significant bit could be ignored, or else

4

Fig. 1. (a) A one-dimensional array of sensor cells, each connected to its own encoder block, which are then chained together. Each arrow represents a wire;
a bundle of data-request wires together with a single acknowledge wire create a channel. (b) Timing of the four-phase handshakes of a one-of-two channel
between one of the sensor cells and its encoder module. The sensor cell raises request ‘a’, and this triggers the encoder to raise the ‘ack’ signal, where the
causality is shown by the green arrow. The encoder responds once it is internally free to do so - dotted lines show the periods such as this where an arbitrary
delay could be introduced. Once ‘ack’ is raised, the request can be lowered. Once the request has been lowered the acknowledge can be lowered. The channel
is then free for new tokens to be transmitted - a second transmission is shown, this time from request ‘b’, but any sequence is possible, e.g. ‘a’, ‘a’, etc.

Fig. 2. (a) Symbolic representation of a bit incrementer, showing the two input ports in blue, and the two output ports in red; (b) look-up table showing the
behaviour of the bit incrementer, i.e. which outputs it will produce for each combination of inputs; (c) A worked example for a 3-bit incrementer. Detailed
description in the main text.

used to tell if the incrementation operation had overflowed by
producing a 4-bit number.

In order to perform incrementation on an asynchronously
transmitted variable-length code, a single increment block

plays the role of the bit-incrementer for every bit in turn. To
achieve this, one can think of creating a channel from the
’carry out’ port to the ’carry in’ port, whose token is to be
consumed in the following cycle. Fig. 3(a) shows the channel

5

connections for the increment block. In practise though, we do
not have an explicit implementation of the carry channel, but
rather maintain the carry state with two state variables, and
check that these have made the required transitions before
advancing to the completion of the handshaking cycle, i.e.
four-phase handshakes with the input and output channels,
whose sequencing is described below.

Since the number of tokens in the sequence may need to
increase, for example in the transition between address 7, with
its 3 tokens (’1’, ’1’, ’P’), and address ’8’, with its 4 tokens
(’0’, 0’, ’0’, ’P’), the block must be capable of inserting a new
token into the sequence, which is achieved when necessary by
performing the four-phase handshake to the right twice before
completing a single handshake to the left. Fig. 3(b) shows
how the basic incrementer look-up table is extended to achieve
the desired functionality. In particular, when a polarity token
arrives, this indicates the end of the address; if at this point the
carry bit is 1, then a new token must be inserted. A ’0’ token
is therefore output along both the address-event channel and
the carry value is also set to ’0’. Meanwhile, the handshake
to the incoming address-event channel does not complete. The
new conditions, i.e. a polarity token coupled with a ’0’ carry
in, allow the polarity bit to be transmitted to the address-event
output. Only then is the handshake to the address-event input
channel completed. Meanwhile, the carry-out channel is set to
’1’, creating the initial conditions for a new address-event to
be incremented.

D. Merge block

The channel connections for the block are shown in fig. 4.
Its role is to pass tokens from the address-events-in channel to
the address-events-out channel whilst merging in new address-
events created by tokens which arrive from the sensor-in chan-
nel. Because events may arrive from the address-events-in or
the sensor-in source, the block includes an arbiter, whose role
is to decide which source came first in case of conflict, and to
guarantee exclusive access to that source until communication
is complete. A complexity is that an incoming address-event
will be composed of multiple tokens in a sequence, and once a
sequence starts, it must not be interrupted until it is completed
by the arrival of a polarity token. This complexity is handled
by a chain of internal states which can block the sensor-in
channel’s access to the arbiter during an address-event. When
a sensor polarity token is accepted, it is transmitted out as a
single polarity token, and this represents the address ’1’.

E. Decoder function

The decoder block can be chained together in order to
decode address-events and deliver them to a one-dimensional
array of receiver elements. As the address-events have a one-
bit polarity payload, the decoder uses a one-of-four channel as
previously. The decoder block performs a decrement function
and a split function. The decrement function reverses the logic
of incrementation, meaning that it sometimes needs to remove
tokens from a sequence rather than insert them, and therefore
it may handshake twice to the input before completing a
handshake with the output. The decoder block includes the

ability to recognise the address ’1’ and to split off the polarity
payload in order to deliver it to a local receiver. By contrast to
the merge function, the split function is deterministic - there
is no need for the equivalent of an arbiter. The overall logic
is simpler to the point that the decrement and split functions
are not chained together but rather implemented in a single
stage. Fig. 5 shows the channel connections for the decoder
block. The equivalent of ’carry’ in the incrementer is called
’borrow’ here, due to the need for less-significant bits which
switch from ’0’ to ’1’ to borrow value from a more significant
bit later in the sequence.

F. Design process

We briefly outline the design process that leads to the code.
In the syntax of Communicating Hardware Processes [31], an
input-driven asynchronous process may be simply described
as:

*[L?x; R!f(x)]

where the process waits to receive an input x from a input
(or L=Left) channel, and transmits some function f of that
input towards the output (o R=Right) channel, before repeating
indefinitely.

When a block has to handshake both to the left and the
right, the order in which these handshakes advance makes
a difference to circuit complexity, and to pipelining, i.e. the
ability of successive blocks to work on separate tokens at
the same time. [32] provided an analysis of this, deriving
a series of templates, amongst which, the ’pre-charge half-
buffer’ template, which the blocks presented here are based
on. Half-buffers take their name from the fact that if they are
in a chain, the chain can contain at most one token for every
two half-buffers (another way of saying this is that each buffer
contributes half a token of slack). The property of a half-buffer
arises in a handshaking expansion (HSE) of the above CHP,
so for a simple buffer (i.e. f = identity) on a one-of-two input,
the HSE is:

*[// repeat forever
[(L0|L1)&˜RA]; // wait until input is valid and right is ready
(L0→R0↑); (L1→R1↑); // evaluate and drive outputs
LA↑; // acknowledge left
[RA]; // wait for right to acknowledge
R0↓; R1↓; // pre−charge outputs
[˜(L0|L1)]; // wait for left to return to quiescence
LA↓; // drop left ack
[˜RA] // wait for right to drop ack

]

We have modified the above template to implement the
necessary logic for each block. We revert to CHP here to
summarise the logic. For an incrementer block with one-of-
three (i.e. ignoring event polarity) can be described in CHP
thus:

*[
c:=1; // a variable representing carry−in is preset to 1
do // Consume bits until end token, emitting result bits on the way
[] L0? → if c=0 → R0!; c:=0 [] c=1 → R1!; c:=0

// input bit b = 0
[] L1? → if c=0 → R1! ; c:=0 [] c=1 → R0!; c
:=1 // input bit b = 1
[] L2? → break // end of input number

6

Fig. 3. (a) Channel connections for incrementer block, showing data-request wires in blue and acknowledge wires in red. One-of-four channels bring through
the successive tokens of a serially encoded address-event. The diagram conceptualises the carry as a channel which transmits data from the ’carry out’ port
to the ’carry in’ port; our implementation achieves the passage of carry data to the next cycle without explicit channel machinery, but rather by manipulating
internal states. (b) Look-up table showing the behaviour of the incrementer, ’P’ indicates either of the polarity tokens, which is then mirrored to the output.
Detailed description in the main text.

Fig. 4. Channel connections for merge block, showing data-request wires in
blue and acknowledge wires in red. One-of-four channels bring through the
successive tokens of a serially encoded address-event, whilst tokens from the
local sensor modules result in new address-events being inserted and passed
out. Detailed description in the main text.

if c=1 → R1! [] c=0 → skip // If carry still 1, emit one
more ’1’ bit

R2! // End token for the output number
]

Meanwhile, CHP for the merge logic between the chain (L)
and a local event source (D=Down), again ignoring polarity,
is:

*[
[] D? → R2! // D causes end token (representing the MSB for the

number 1)
[] L0? → R0! ; ForwardRestFromL // start forwarding an L−

sequence
[] L1? → R1! ; ForwardRestFromL
[] L2? → R2! // empty sequence shortcut

]
subprocess ForwardRestFromL:

Fig. 5. Channel connections for decoder block, showing data-request wires
in blue and acknowledge wires in red. One-of-four channels bring through the
successive tokens of a serially encoded address-event. An incoming address
of 1 is split off and delivered to the local event receiver. A ’borrow’ value,
necessary for the decrementation of the serially encoded address is envisaged
here as a channel of communication from the processing of the previous to
the next token in an address-event, and in practice, forms part of the internal
state which is necessary for the full implementation of block functionality.

do
[] L0? → R0!
[] L1? → R1!
[] L2? → R2! ; break

The above logic is then expanded for example by handling
different polarities etc. Synthesis then proceeds by implement-
ing a Production Rule Set (PRS) [14]. This describes a series
of nodes, each with a defined pull-up and pull-down network,
where these networks are logical combinations of the state
of some other nodes in the circuit. Channels can also be

7

defined, consisting of sets of nodes playing defined roles such
as data and acknowledge signals, and over which certain rules
of communication, such as mutual exclusion, can be assumed.
Synthesis involves adding a series of guards which ensure that
signal transitions occur only in orders allowed by the template.
In this process, additional signals may be added if necessary
either to ensure that a CMOS implementation is possible (so
called ’bubble reshuffling’) or to simplify the design.

G. Circuit design and simulation

To simulate the circuitry, we have used the open-source
Asynchronous Circuit/Compiler Tools (ACT) software devel-
oped by Manohar and colleagues at Yale [33]. This soft-
ware allows pull-up and pull-down networks, once logically
enabled, to take highly random amounts of time to force a
transition of the state of the node to which they are attached.
Repeated simulation allows cases of event timing to be tested
which are much more extreme than would occur in practice
in a CMOS implementation, so that any conditions which
would cause the circuit to fail in practice, such as interference
between a pull-up and a pull-down network simultaneously
active on the same node, can be caught quickly. The delays
are drawn from a 1/(1) = x distribution with x = [0, 65536)
for an extra wide std-deviation of the samples σ ≈ 65536√

2
com-

pared to the mean x = 65536
ln (65536+1) . This type of simulation

gives a good level of assurance that circuits actually conform
to QDI assumptions. For example, the simulation reported in
section III-A2 below involved around 235000 gate switching
events and therefore 235000 random delays used.

Once a production rule set is defined, there is a simple
deterministic process to convert this into a digital CMOS
design. The X-Fab 0.18 µm CMOS design kit has been used
within Cadence to manually construct these corresponding
schematics 4.

The encoder has been laid out (see figure 6) in a 60×90µm
block, transistor sizings based on standard rules of thumb for
complementary logic, including keepers with 1:4 drive strength
ratio, and manual layout not optimised for area 5.

III. RESULTS

The core production rule sets for the 3 blocks (increment,
merge and decrement) can be found in the supplementary
materials. The complete design within the ACT framework
can be found in this GitHub repository. The repo includes
test benches, input data, output data and data analysis and
visualisation scripts which replicate the results shown in the
following section.

For each signal in the design (for example r1) there are
a pull-down (→ r1-) and a pull-up rule (→ r1+), where the
pull-down rule is subsequently constructed as a network of n-
type transistors and the pull-up rule with p-type transistors.

4The prs2net tool in the same repo could be used to automate the production
of spice netlists for simulation, but this was not used here; some minor manual
optimisations were made between PRS and schematic.

5At the time of writing we know that minor changes of transistor sizing
are necessary w.r.t. this layout to avoid glitches due to charging pumping.
This layout includes muxes which allow the cell to be disabled, passing data
directly through in the L-R chain - 60 extra transistors

Fig. 6. Manual layout for encoder in X-Fab 0.18 µm.

The right half of each pull-down rule contains the logical
complement of the left half of the pull-up rule, and vice
versa. This design pattern completes the rule set so that
no weak feedback is necessary in order to stabilise the r1
node. This pattern is more verbose than one relying on weak
feedback, leading to a larger design with almost twice as many
transistors. This design pattern has been followed as a step
towards subsequent conversion to a single-polarity design for
candidate flexible electronic technologies (not presented in
this paper). The resulting design contains 151 transistors in
the incrementer, 299 transistors in the merge (therefore 450
transistors in the encoder) and 569 transistors in the decoder.

The repository also contains a non-complementary version
of the encoder, which relies on keepers, and this design has
been used in the ams/spectre simulations below. This design
contains 368 transistors c.f. 450 for the complementary design.

A. ACT simulation results

1) Single encoder: We present results from three test sce-
narios. Fig. 7(a) shows the first scenario, in which address-
events from previous sensing element along the chain and
local sensor events come into the encoder block from their
respective channels. Fig. 7(b) shows the actual sequences of
events which were input and received at the output 6. (c) is
a histogram which gives counts of the events both in and
out, making it easy to see that every event input has been
incremented by 1 and output. Two different output sequences
are given for the same set of inputs, which result from using
a different random seed in the simulator. It can be seen
that all the same tokens are output (thus, the histogram in
(c) is identical) but that they come out in different orders;
for example the first sequence starts ’1a, 1b, 2a ...’ but the
second sequence starts ’1a, 2a, 1b ...’ (highlighted in yellow
in the raw data). Diverse merging order for identical sender
behaviour is always possible but is made more likely by the
extreme random timing of the simulator; a given physical

6The addresses have been converted from the serial encoding; the actual
token sequences are at https://github.com/event-driven-robotics/snowball/tree/
main/outputs, the conversions are obtained with the script https://github.com/
event-driven-robotics/snowball/blob/main/data conversion.py

https://github.com/asyncvlsi/act
https://github.com/event-driven-robotics/snowball
https://github.com/event-driven-robotics/snowball/tree/main/outputs
https://github.com/event-driven-robotics/snowball/tree/main/outputs
https://github.com/event-driven-robotics/snowball/blob/main/data_conversion.py
https://github.com/event-driven-robotics/snowball/blob/main/data_conversion.py

8

Fig. 7. (a) Test scenario, with inputs in blue and outputs in red. (b) Raw event sequences for each input and output. The suffixes ’a’ and ’b’ are shorthand
for the two event polarities, and ’a’ and ’b’ without a numeric address prefix are used to indicate the events from the sensor. Two output sequences are shown
one above the other for the same inputs, each resulting from a different random seed for the prsim simulator. (c) Histogram of events in (blue) and events out
(red) by sensor address. The events to the left of the dashed line are those from the local sensor. (d) Detail of how the two event streams have been merged,
for the start of the first output sequence from (b).

implementation of this system is likely to handle arbitration
in a highly repeatable way. (d) Illustrates how the first section
of the first output sequence arises from the merging and
incrementing of the two address sources.

2) Encoder array: Fig. 8(a) gives the scenario for which
the application is envisioned, in which all events arise from
a 1D array of sensors, and accumulate at the output, having
had individual addresses assigned through progressive incre-
mentation. Fig. 8(b) gives the actual event sequence which
was input at each sensor, and the sequence of address-events
which came out. These are summarised in the histogram in
fig. 8(c), which shows that the sensor sequences were all
assigned incrementing addresses. We will discuss the ordering
of the output sequence in section IV-B below.

3) Decoder: Fig. 9(a) shows how we have tested the
decoder block through the streaming in of address-events from
a single source. Fig. 9(c) summaries the counts of events at
the input and received at each of the outputs, making it clear
that each address has been decremented, and that events which
entered with address 1 were sent to the local event receiver.

B. Spectre (Schematic) simulation results

A PRS design which is CMOS implementable can be
translated straightforwardly into a working CMOS design. In
10 we present the results of a brief simulation of such a
translation, for which we have used the X-Fab 0.18µm process.
The simulated system is a single encoder block receiving
simulated inputs from a channel l and a local event source
d, and producing outputs on channel r. The r enable signal is
produced by a nor gate on the outputs of channel r. We have
handcrafted inputs (red traces) in order to highlight aspects of
the performance of the system. The outputs of the encoder are
shown in green. The ’r’ channel enable (re) is shown in blue
as this is produced by a 4-input nor gate on the r channel
outputs (this enable signal is active-low, as opposed to the
active-high acknowledge signal shown in fig. 1. Each address-
event is shown by a linked pair of black balloons and these are
numbered. For example (1) a single token on l2 (i.e. address:
1a) produces two tokens in output - r0 followed by r2 (i.e.
address: 2a). (3) a token t0 (i.e. polarity a) produces token r2
(i.e. address 1a), but although it presents itself at 500 ns, it
must wait until multi-token address-event (2) has completed
before it gets inserted into the r channel.

9

Fig. 8. (a) Test scenario, with inputs in blue, outputs in red, and intermediate channels in yellow. The leftmost input is unused. (b) Event sequences for each
input and output. The suffixes ’a’ and ’b’ are shorthand for the two event polarities, and ’a’ and ’b’ without a numeric address prefix are used to indicate the
events from a sensor. In the output sequence, we have marked the point at which the final address-event from sensor 1 was received. (c) Histogram of events
in (blue) and events out (red) by sensor address. The events to the left of the dashed line are those from each local sensor; note that there are 8 identical
sets of these, one from each sensor. (d) Histogram of events out only up to the point that the final address-event from sensor 1 was received (the rest of the
events go on to arrive after this snapshot, until 64 events per sensor have been received). These events are not separated by polarity, so for example addresses
’1a’ and ’1b’ are both counted as address 1. The inset table shows the actual count of address-events received.

C. Benchmarking

We compare the encoder to a parallel AER (P-AER) en-
coder, in terms of speed, area, power and number of pins.
Specifically we compare to a one-dimensional encoder: al-
though some neuromorphic chips take advantage of a two-
dimensional array of spike sources to simplify encoding hard-
ware, it is also common for neurons to be arranged in one-
dimension and for the second dimension of the chip area to
host a synaptic cross-bar array, as in [34]. We explore a wide
range of numbers of inputs (5 points spaced exponentially over
3 orders of magnitude) to investigate how various quantities
scale. Inputs are perfect, polarised (or paired) event sources,
so one input maps to either one encoder from this work

with a local one-of-two input or to two adjacent inputs
to P-AER, and the experiment measures the effects of one
spike from each of these pairs, all delivered simultaneously
plus a small amount of temporal jitter (uniform in range
5ns ∗ num input pairs from a common seed). The P-AER
encoder is constructed from the templates of https://github.
com/async-ic/actlib-neurosynaptic-perifery, (specifically the
”sadc encoder” unit test, which has been deployed in the
spiking ADC of the TEXEL chip [35]. It arbitrates, encodes
and then converts from QDI to bundled data output; this is a
typical approach to reducing the number of pins necessary for
inter-chip communication, at the expense of additional stages
and the introduction of timing assumptions. We do not perform

https://github.com/async-ic/actlib-neurosynaptic-perifery
https://github.com/async-ic/actlib-neurosynaptic-perifery

10

Fig. 9. (a) Test scenario, with inputs in blue and outputs in red. (b) Event sequences for each input and output. The suffixes ’a’ and ’b’ are shorthand for the
two event polarities, and ’a’ and ’b’ without a numeric address prefix are used to indicate the events sent to the local event receiver. (c) Histogram of events
in (blue) and events out (red) by sensor address. The events to the left of the dashed line are those received by the local event receiver.

Fig. 10. Results of a transistor-level Spectre simulation of an encoder merging
inputs from both upstream addresses and from a local event producer. Detailed
description in the text.

bundled data conversion for this work because the number of
wires is neither large nor expanding. The design incorporates
programmable delay stages to ensure data validity; we have
nominally included one such stage but have not used this
delay for these comparisons. Knowing that each encoder block
introduces 1 token of slack, we have calculated the mean
number of serial address-events from a spiking source that
can queue ahead of it before exiting the chain (each requiring

a variable and growing number of tokens)7, and we have
introduced sufficient half-buffer stages in the P-AER encoder
(between the arbiter and the final bundled data converter) to
introduce the same amount of slack; this design choice might
be reasonable for P-AER when for example significant bursts
of spikes from multiple sources are expected or when the
receiver is expected to consume events at a non-constant rate;
however this choice comes at the expense of an increased
single-event latency. We have also compared against P-AER
with only a nominal addition of 2 half-buffers (slack=1) to
decouple the encoder from the converter to bundled data.
Both this p-AER implementation and our work are simulated
prior to layout in the X-Fab 0.18µm process. The results
are in table II. The number of transistors in each design
can serve as a proxy for both quiescent power and layout
area. Energy per address-event is given; additional power
necessary to transmit off-chip is not considered, since this cost
is highly dependent on the nature of downstream circuitry.
We do not compare to an LVDS-based design such as [36]
for the same reason. Mean latency is given, which should be
understood as queuing time given 50% load (one input per
input pair) almost simultaneously. Figure 11 summarises the
results, showing best-fit lines on a log–log plot. The reported
gradients correspond to power-law exponents, assuming that
scaling is in the relation y ∝ inputsgrad.

7https://github.com/event-driven-robotics/snowball/blob/main/calculate
slack by address.py

https://github.com/event-driven-robotics/snowball/blob/main/calculate_slack_by_address.py
https://github.com/event-driven-robotics/snowball/blob/main/calculate_slack_by_address.py

11

Num
inputs

Num pins
output

Mean queue
capacity

(address-events)
Num transistors Mean latency (ns) Mean energy

(J/event)

Inputs
(pairs)

This
work

P-AER This
work

P-AER
same
cap.

P-AER
slack=1

This
work

P-AER
same
cap.

P-AER
slack=1

This
work

P-AER
same
cap.

P-AER
slack=1

This
work

P-AER
same
cap.

P-AER
slack=1

10 (5)
5 6 0.6 0.5 1 1840 1580 1780 29.4 12.1 12.2 9.54 8.38 10.4

32 (16)
5 7 2.2 2 1 5890 3890 3420 143 41.5 41.2 43.4 17.4 12.8

100 (50)
5 9 5.6 5.5 1 18400 14000 11200 614 131 130 187 47.8 18.9

316 (158)
5 11 14 14 1 58100 55800 45170 2620 611 607 777 131 23.5

1000
(500)

5 12 35 35 1 184000 144000 113000 10700 2260 2240 3080 343 27

TABLE II
COMPARISON BETWEEN P-AER AND THIS WORK. ALL VALUES ROUNDED TO 3 SIGNIFICANT FIGURES. SIMULATIONS ARE PRE-LAYOUT, USING THE

X-FAB 0.18µM PROCESS.

Fig. 11. Summary of results from table II

IV. DISCUSSION

A. Comparison to parallel AER

Compared to the number of inputs, the transistor count
scales linearly, and is broadly similar to P-AER. Latency scales
super-linearly in all designs and more steeply in this work.
Power scales super-linearly for this work but sub-linearly for
P-AER, particularly in the design with only nominal slack.
Overall, this work does not excel in any of the quantitative
metrics investigated; the advantages are instead in the freedom
and simplicity of system design that it allows, especially
for distributed systems, where e.g. one can play with trade-
offs with respect to the number of elements in a sensor
cell (expanding the payload) and the number of sensor cells.
Moreover, we have presented mean performance by input,
however this belies great differences in behaviour as discussed
in the following section.

B. Sensor cell priority

In the encoder circuit, an arbiter serves to merge events
which come from a local sensor circuit together with events
which come from an upstream encoder circuit and thereby
from other sensor circuits. Whilst this arbiter is not guaranteed
to be fair, it performs fairly in practice, because while it is
servicing a request from one of the two input paths, if a request
arises from the other input path, then the other input path
is very likely to be serviced next8. Nonetheless, the overall
priorities that sensor cells are given within a chain of encoders
is highly unfair. In case of sensory event production which
exceeds the overall bandwidth of the channel, queuing will
occur. In this queue, an event from a sensor cell attached to
the final encoder in the chain needs to wait for just one event
ahead of it before being processed by the encoder. For the
sensor cell attached to the last-but-one encoder, it must wait
for one event before being processed by the encoder, but then
it must wait for the sensor cell ahead of it to have a turn before
moving on to the final encoder. For the next one back, the two
sensor cells ahead of it will be processed a total of three times
before its turn, and so on, with relative priority approximately
halving at each step backwards in the chain.

We demonstrate this here with a reanalysis of the re-
sults from the multiple sender experiment of section III-A2.
Fig. 8(d) shows a histogram of the number of events which
were received from each address (ignoring polarity) up to the
point at which the final event from sensor 1 (i.e. the sensor
closest to the exit) is received. The approximate exponential
decay in the number of events received from sensors backward
along the chain reflects the reducing priority each sensor has
been given. (Note that this snapshot was taken before all events
arrived - eventually an equal number of events from all sources
went on to be delivered, since the simulated event sources
themselves queued their events for as long as was necessary.)

Locally fair arbitration has been used to achieve globally fair
arbitration across two-dimensional arrays since [7], giving all

8The deviations from this fair behaviour which can be seen in the ACT
experiments presented are likely exaggerated due to the highly random
simulation timing strategy.

12

Fig. 12. The circles represent sensor cells arranged on a two-dimensional
surface, perhaps taxels on a fingertip, with the number inside each one rep-
resenting the address assigned, given their arrangement in a one-dimensional
array (the blue line) with data flowing towards the centre. The pink region
encloses the taxels which would be able to deliver events at 1 kHz simulta-
neously in the case that all of them were trying to do so, and assuming a 10
kHz total bandwidth for the array.

event-producing cells in the array equal priority. This seems
like the most general strategy for arbitration. In the context
of event-based vision, for example, this should mean that
no part of the visual field is neglected for too long even
in the case of high activity in another part of the visual
field. We argue, however, that this strategy may not always
be the best one. Fig. 12 represents taxels on the surface
of a fingertip connected together in a spiral pattern. The
connections represent links between encoder circuits, and the
flow of data is inwards towards the centre of the spiral. The
numbers of the taxels therefore represent the addresses that
the taxels will be assigned by the encoder chain. A tactile
array with performance at least equivalent to a human fingertip
should have (rounding up to the nearest order of magnitude
w.r.t. references) 1000 taxels [37], and a fast subset of these
should achieve individual event frequencies of 1 KHz [38];
to achieve this the event bandwidth at the output of at least
the final encoder circuit may need to be up to 1 MHz in
order not to exceed bus capacity, an event rate which may
not be achievable with new candidate transistor technologies
for flexible electronics, such as IGZOs, OFETs, OECTs etc.

The figure shows a simplified scenario in which there
are 100 taxels (which may be realistic given the number of
taxels that are currently integrated on robotic platforms). Let’s
consider the effect of a system-wide event bandwidth of 10
kHz (i.e. the maximum address-event rate achievable at the
output of cell 1, ignoring the fact that addresses with different
numbers of tokens will have different delivery duration). Let’s
consider the effect of a vibrating stimulus which evokes an
event rate of 1 kHz from every taxel for a brief period. If all of

the taxels were serviced fairly, then each would produce events
at only 100 Hz (i.e. 10 kHz total capacity divided equally
between 100 cells), from which the nature and particularly the
frequency of the stimulus could not easily be inferred. Instead
what happens is that the centremost 9 taxels are serviced
with high priority, each producing a 1 kHz signal. Thereafter
backwards in the chain, taxels produce increasingly infrequent
signals, with most being effectively ignored completely. For
example, taxel 10 will produce at approx 500 Hz, taxel 11 at
250 Hz, and so on; if the situation continued indefinitely, taxel
35 would get serviced only once per year!

There is therefore a central region of the fingertip (as
shown on the diagram) which has guaranteed high temporal
sensitivity. Other regions of the fingertip also offer high
temporal sensitivity in isolation, providing only that the bus
is not overloaded. A prosthesis user or robot with such a
fingertip could use this knowledge to adjust their active haptic
exploration or handling strategy in order to prioritise the use
of the highly sensitive region.

Similar arguments might be made for other sensory modal-
ities, including vision; wherever a sensor is intended to be
used for active exploration rather than in a passive reactive
way, this prioritisation strategy might be preferable. Foveated
vision sensors mimic the human eye in prioritising spatial
acuity in their central region [39]; this protocol could deliver
an alternative form of foveation offering better temporal acuity.

The passage of events through each link in the chain
of encoders adds latency, which in the above example of
frequency sensing will translate to a phase shift per taxel.
Such phase shift would be somewhat predictable and might be
calibrated against, were it to cause a problem for a particular
application. In more detail, the sender-specific delay consists
of a fixed time per transmission stage through which it must
pass, plus a jitter, which is different for each transmission.
The more stages an event must pass through the more timing
uncertainty is added by the accumulation of jitters.

The multiple buffer stages and incrementation calculations
also imply an energy cost. Mitigating this, all communications
are local and there is never a need for a signal from one cell
to drive the capacitance of multiple other driver stages, as is
the case in parallel multiplexing. Detailed energy and timing
analyses should be delayed until a target technology has been
chosen.

In the above example of a high-frequency stimulus, after
an abrupt end to this stimulus, the chain will flush out an
old event from every cell within a 10 ms period; a receiver
would need to interpret such a spatiotemporal pattern of events
accordingly, perhaps by discarding those events.

C. Extensions and generalisations
If a polarity payload for each event is not required, for

example if events are generated by neurons, the polarity token
could be replaced straightforwardly with a token indicating
the end of an address-event, and this would result in a one-of-
three protocol. Such solutions have been designed in PRS and
tested in ACT; however we do not present the results here,
since they are straightforward simplifications of the work we
have presented.

13

It should be possible to add more dimensions to the address
space by inserting tokens in the sequence which represent a
change of address dimension; however we haven’t developed
these ideas.

An implication of the decision to implement the decoder
from a single half-buffer template is that, for the design
presented, the decoder offers half a unit of slack per neural
destination whereas the encoder offers one unit of slack per
spiking source. In other words, an encoder chain would be
able to store up twice as many events internally as a decode
chain of the same length. Naturally, such decisions could be
revisited in case of clearer system-level requirements.

The prioritisation strategy described in the previous section
has been explored as a consequence of the possibility to print
circuitry using a rolling process [40]. If unfair arbitration
is undesirable, it could be partially mitigated by printing
or otherwise producing repeating cells containing multiple
sensory units, with fair arbitration performed between all
sensors in a single cell, before address-events enter a serial
encoder. For example, if a rolling printing process allowed 128
sensory cells to be printed in a single block, then the first 128
sensors in an array would share equal priority with the second
group of 128 sensors and so on. Such a sharing of the cells
developed here might reduce their effective transistor count
per neural unit. We have not created such a design, which
would require additional complexity for the transmission of
local address bits. Fig. 13 offers a motivating example for such
a development. It shows decoder and encoder chains delivering
actuator control events and the output of a local ’ganglion’ -
i.e. a recurrent spiking neural network whose role is perception
based on locally available information. This same example
could also benefit from a two-dimensional variable-length
serial protocol as mentioned above, for added generality. Just
as evolution has explored animal designs with highly variable
numbers of repeating segments, we perceive an advantage to
robot designers in having freedom to chain together arbitrary
numbers of local processing or sensorimotor units, for which
an octopus-inspired robotic arm could be one example.

V. CONCLUSION

We have designed an asynchronous, bit-serial, variable-
length address-event codec with relative addressing for dis-
tributed neuromorphic sensing and computation. This codec
works with address-events carrying a one-bit payload, a
common design motif in event-based sensors. We plan to
use it to communicate bidirectional changes in pressure or
other physical quantities. The codec consists in two circuits:
an encoder, which increments address-events it receives and
merges these with new events triggered by a local event
source; and a decoder, which decrements address-events which
it received and splits off events with a specific address to
deliver to a local event receiver. The QDI design method,
paired with the bit serial encoding, makes this implementation
dynamically tileable, robust and suitable for deployment on
flexible electronics [40], modular sensory platforms and dense
on-chip array implementations, all without a circuit design
complexity overhead.

Fig. 13. A possible repeating circuit motif for a segment of a long robotic
arm. A serial decoder chain delivers events whose payload is the local address
of an actuator. These events join events produced by local sensors to innervate
a local recurrent spiking neural network, whose output events undergo local
fair hierarchical arbitration to become the payload of events inserted into a
serial encoder chain.

ACKNOWLEDGMENT

CB acknowledges the financial support of the National
Biodiversity Future Center funded under the National Recov-
ery and Resilience Plan (NRRP), Mission 4 Component 2
Investment 1.4 - Call for tender No. 3138 of 16 December
2021, rectified by Decree n.3175 of 18 December 2021 of
Italian Ministry of University and Research funded by the
European Union – NextGenerationEU. SB acknowledges the
financial support from PNRR MUR Project PE000013 ”Future
Artificial Intelligence Research (hereafter FAIR)”, funded by
the European Union – NextGenerationEU.

REFERENCES

[1] C. Bartolozzi, G. Indiveri, and E. Donati, “Embodied neuromorphic
intelligence,” Nature communications, vol. 13, no. 1, p. 1024, 2022.

[2] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[3] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H.
Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K.
Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse,
G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and H. Wang,
“Loihi: A Neuromorphic Manycore Processor with On-Chip Learning,”
IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan. 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8259423/

https://ieeexplore.ieee.org/document/8259423/

14

[4] A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N.
Oza, A. R. Voelker, C. Eliasmith, R. Manohar, and K. Boahen,
“Braindrop: A Mixed-Signal Neuromorphic Architecture With a
Dynamical Systems-Based Programming Model,” Proceedings of the
IEEE, vol. 107, no. 1, pp. 144–164, Jan. 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8591981/

[5] P. Purohit and R. Manohar, “Field-programmable encoding for address-
event representation,” Frontiers in Neuroscience, vol. 16, p. 1018166,
Dec. 2022. [Online]. Available: https://www.frontiersin.org/articles/10.
3389/fnins.2022.1018166/full

[6] P. M. Ros, M. Crepaldi, C. Bartolozzi, and D. Demarchi, “Asynchronous
dc-free serial protocol for event-based aer systems,” in 2015 IEEE
International Conference on Electronics, Circuits, and Systems (ICECS).
IEEE, 2015, pp. 248–251.

[7] K. A. Boahen, “Point-to-point connectivity between neuromorphic chips
using address events,” IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 47, no. 5, pp. 416–434, 2000.

[8] M. Sivilotti, “Wiring considerations in analog vlsi systems, with ap-
plication to field-programmable networks,” Ph.D. dissertation, CalTech,
1991.

[9] O. Richter, C. Wu, A. M. Whatley, G. Köstinger, C. Nielsen,
N. Qiao, and G. Indiveri, “DYNAP-SE2: a scalable multi-core
dynamic neuromorphic asynchronous spiking neural network processor,”
Neuromorphic Computing and Engineering, vol. 4, Jan. 2024. [Online].
Available: https://iopscience.iop.org/article/10.1088/2634-4386/ad1cd7

[10] K. A. Boahen, “A burst-mode word-serial address-event link-i: Trans-
mitter design,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 51, no. 7, pp. 1269–1280, 2004.

[11] S. Fok and K. Boahen, “A Serial H-Tree Router for Two-Dimensional
Arrays,” in 2018 24th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC). Vienna: IEEE, May 2018, pp. 78–85.
[Online]. Available: https://ieeexplore.ieee.org/document/8589987/

[12] “SCX AER protocol,” https://tilde.ini.uzh.ch/∼amw/scx/scx.html.
[13] C. Li, N. Imam, and R. Manohar, “A deterministic

neuromorphic architecture with scalable time synchronization,” Nature
Communications, vol. 16, no. 1, p. 10329, Nov. 2025. [Online].
Available: https://www.nature.com/articles/s41467-025-65268-z

[14] A. J. Martin and M. Nystrom, “Asynchronous techniques for system-on-
chip design,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1089–1120,
2006.

[15] J. Sparsø, Introduction to asynchronous circuit design. Kongens
Lyngby, Denmark: DTU Compute, Technical University of Denmark,
2020, oCLC: 1199326564.

[16] W. Hua, Y.-S. Lu, K. Pingali, and R. Manohar, “Cyclone: A Static
Timing and Power Engine for Asynchronous Circuits,” in 2020 26th
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC). Salt Lake City, UT, USA: IEEE, May 2020, pp. 11–19.
[Online]. Available: https://ieeexplore.ieee.org/document/9179365/

[17] R. Manohar and Y. Moses, “The Eventual C-Element Theorem
for Delay-Insensitive Asynchronous Circuits,” in 2017 23rd IEEE
International Symposium on Asynchronous Circuits and Systems
(ASYNC). San Diego, CA: IEEE, May 2017, pp. 102–109. [Online].
Available: http://ieeexplore.ieee.org/document/8097392/

[18] N. Imam, F. Akopyan, J. Arthur, P. Merolla, R. Manohar, and D. S.
Modha, “A digital neurosynaptic core using event-driven qdi circuits,”
in 2012 IEEE 18th International Symposium on Asynchronous Circuits
and Systems. IEEE, 2012, pp. 25–32.

[19] L. Liu and K. Boahen, “Hierarchical Event Readout with Asynchronous
Pipelined Opportunistic Merges,” in 2025 29th IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC). Portland,
OR, USA: IEEE, May 2025, pp. 108–117. [Online]. Available:
https://ieeexplore.ieee.org/document/11021121/

[20] P. Purohit and R. Manohar, “Asynchronous, event-driven readout
for large-scale imaging devices,” in 2025 29th IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC). Portland,
OR, USA: IEEE, May 2025, pp. 118–125. [Online]. Available:
https://ieeexplore.ieee.org/document/11021114/

[21] A. Ben Abdallah and K. N. Dang, “Toward robust cognitive 3d brain-
inspired cross-paradigm system,” Frontiers in Neuroscience, vol. 15, p.
690208, 2021.

[22] S.-C. Liu, A. Van Schaik, B. A. Minch, and T. Delbruck,
“Asynchronous Binaural Spatial Audition Sensor With 2x64x4 Channel
Output,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 8, no. 4, pp. 453–464, Aug. 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6658899/

[23] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 ×128 120 db 15µs
latency asynchronous temporal contrast vision sensor,” IEEE journal of
solid-state circuits, vol. 43, no. 2, pp. 566–576, 2008.

[24] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 dB
Dynamic Range Frame-Free PWM Image Sensor With Lossless
Pixel-Level Video Compression and Time-Domain CDS,” IEEE Journal
of Solid-State Circuits, vol. 46, no. 1, pp. 259–275, Jan. 2011. [Online].
Available: http://ieeexplore.ieee.org/document/5648367/

[25] M. Yao, O. Richter, G. Zhao, N. Qiao, Y. Xing, D. Wang, T. Hu,
W. Fang, T. Demirci, M. De Marchi, L. Deng, T. Yan, C. Nielsen,
S. Sheik, C. Wu, Y. Tian, B. Xu, and G. Li, “Spike-based dynamic
computing with asynchronous sensing-computing neuromorphic chip,”
Nature Communications, vol. 15, no. 1, p. 4464, May 2024. [Online].
Available: https://www.nature.com/articles/s41467-024-47811-6

[26] G. Rovere, C. Bartolozzi, N. Imam, and R. Manohar, “Design of a qdi
asynchronous aer serializer/deserializer link in 180nm for event-based
sensors for robotic applications,” in 2015 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 2015, pp. 2712–2715.

[27] N. Bingham and R. Manohar, “Self-timed adaptive digit-serial addition,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 27, no. 9, pp. 2131–2141, 2019.

[28] S. Moradi, N. Imam, R. Manohar, and G. Indiveri, “A memory-
efficient routing method for large-scale spiking neural networks,” in
2013 European Conference on Circuit Theory and Design (ECCTD).
IEEE, 2013, pp. 1–4.

[29] S. A. Bamford, A. F. Murray, and D. J. Willshaw, “Large developing
receptive fields using a distributed and locally reprogrammable address–
event receiver,” IEEE transactions on neural networks, vol. 21, no. 2,
pp. 286–304, 2010.

[30] P. Merolla, J. Arthur, R. Alvarez, J.-M. Bussat, and K. Boahen, “A multi-
cast tree router for multichip neuromorphic systems,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 61, no. 3, pp. 820–833,
2013.

[31] A. J. Martin, “Compiling communicating processes into delay-
insensitive vlsi circuits,” Distributed computing, vol. 1, pp. 226–234,
1986.

[32] A. M. Lines et al., “Pipelined asynchronous circuits,” Master’s thesis,
California institute of Technology, 1995.

[33] S. Ataei, W. Hua, Y. Yang, R. Manohar, Y.-S. Lu, J. He, S. Maleki, and
K. Pingali, “An open-source eda flow for asynchronous logic,” IEEE
Design and Test, vol. 38, no. 2, pp. 27–37, 2021.

[34] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sum-
islawska, and G. Indiveri, “A reconfigurable on-line learning spiking
neuromorphic processor comprising 256 neurons and 128k synapses,”
Frontiers in neuroscience, vol. 9, p. 141, 2015.

[35] H. Greatorex, O. Richter, M. Mastella, M. Cotteret, P. Klein, M. Fabre,
A. Rubino, W. Soares Girão, J. Chen, M. Ziegler et al., “A neuromorphic
processor with on-chip learning for beyond-cmos device integration,”
Nature Communications, vol. 16, no. 1, p. 6424, 2025.

[36] C. Bartolozzi, P. M. Ros, F. Diotalevi, N. Jamali, L. Natale, M. Crepaldi,
and D. Demarchi, “Event-driven encoding of off-the-shelf tactile sensors
for compression and latency optimisation for robotic skin,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017, pp. 166–173.

[37] G. Corniani and H. P. Saal, “Tactile innervation densities across the
whole body,” Journal of Neurophysiology, vol. 124, no. 4, pp. 1229–
1240, 2020.

[38] R. S. Johansson, U. Landstro, R. Lundstro et al., “Responses of
mechanoreceptive afferent units in the glabrous skin of the human hand
to sinusoidal skin displacements,” Brain research, vol. 244, no. 1, pp.
17–25, 1982.

[39] M. Yeasin and R. Sharma, Foveated Vision Sensor and Image Processing
– A Review. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp.
57–98. [Online]. Available: https://doi.org/10.1007/11504634 2

[40] S. A. Bamford, E. Janotte, and C. Bartolozzi, “Flexible printed circuit
sensor,” 2022 WO2023139478A1.

https://ieeexplore.ieee.org/document/8591981/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1018166/full
https://www.frontiersin.org/articles/10.3389/fnins.2022.1018166/full
https://iopscience.iop.org/article/10.1088/2634-4386/ad1cd7
https://ieeexplore.ieee.org/document/8589987/
https://tilde.ini.uzh.ch/~amw/scx/scx.html
https://www.nature.com/articles/s41467-025-65268-z
https://ieeexplore.ieee.org/document/9179365/
http://ieeexplore.ieee.org/document/8097392/
https://ieeexplore.ieee.org/document/11021121/
https://ieeexplore.ieee.org/document/11021114/
http://ieeexplore.ieee.org/document/6658899/
http://ieeexplore.ieee.org/document/5648367/
https://www.nature.com/articles/s41467-024-47811-6
https://doi.org/10.1007/11504634_2

	Introduction
	Background - Asynchronous digital communication and quasi-delay-insensitive logic
	Background - Event-based communication in neuromorphic systems

	Methods
	Target system
	Address-event encoding
	Increment block
	Merge block
	Decoder function
	Design process
	Circuit design and simulation

	Results
	ACT simulation results
	Single encoder
	Encoder array
	Decoder

	Spectre (Schematic) simulation results
	Benchmarking

	Discussion
	Comparison to parallel AER
	Sensor cell priority
	Extensions and generalisations

	Conclusion
	References

